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Abstract 
 

THE GASEOUS STUDY: AN EARLY HISTORY OF MATHEMATICAL LOGIC AND SET 

THEORY 
 

Douglas Andrew Tuers 

B.A., University of North Carolina at Greensboro 

M.L.S., North Carolina Central University 

M.A., Appalachian State University 

 

Chairperson: Dr. Michael Behrent 

 

 The historiographies of logic and set theory have told the story of crosspollination 

between these two strands occurring in the early twentieth century. This thesis argues for earlier 

cross-pollinations and traces the history of these interactions. The narrative begins with the 

British logicians in the first half of the nineteenth century. Then narrative then follows the 

history through George Boole, Bernard Bolzano, Gottlob Frege, Giuseppe Peano, Richard 

Dedekind, and Georg Cantor. Along the way there will be explication of the ideas that marked 

this history. These are put forward mainly for the non-specialist; while the appendix contains 

more advanced aspects of these ideas.  
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Introduction 
 

 

 “From the paradise that Cantor has created for us no one will cast us out.” 

        -David Hilbert
1
  

 

 “There is no retreat in mathematics except in the gaseous part. (you may find that 

 some of mathematics is uninteresting-that Cantor’s paradise is not a paradise.)” 

        -Ludwig Wittgenstein
2
  

   

 

Why, when mathematicians probed the foundation of mathematics in the nineteenth 

century, did they develop set theory? Why set theory rose to prominence is partly a question for 

historians. The truth of set theory is of course determined by mathematicians, but the legitimacy 

of its ascension in the world of mathematical academia is determined by historians of 

mathematics. The historian can tell us what questions were being answered by these 

mathematicians, and what the philosophical influences were on the development of set theory. It 

is for the philosopher to tell us the merit of these influences. Set theory as discussed here will be 

what is called today naïve set theory. Naïve set theory concerns the generation and manipulation 

of sets, or collections of things. In set theory this almost always means number systems i.e., 

natural numbers, algebraic numbers, real numbers etc. Set theory, and so its history, is important 

because it acts as the foundation for many branches of mathematics today. A wide variety of sub-

fields of mathematics use the idea of collections of objects. This story will be one of interaction 

                                                 
1
 Akihiro Kanamori, “Hilbert and Set Theory,” Synthese 110 (January 1997): 77.  

2
 Ludwig Wittgenstein, Wittgensteins Lectures: Cambridge, 1932-1935 (Amherst, New York: Prometheus Books, 

2001), 225.  
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between logic and set theory. These two strains met at different points throughout the 

nineteenth century. This thesis will be about these meetings, and will ultimately argue that the 

history of such meetings is older than historians have previously thought. This story begins with 

the logic that came out of Britain before 1847. It continues with the British mathematician 

George Boole who in 1847 published the groundbreaking The Mathematical Analysis of Logic. 

This work created the new logic that would be one of the great turns in the history of logic. It 

would have great impact on the development of set theory. The historiography is beginning to 

change in a way that will be reflected in this thesis. The new view of historians is that Augustus 

De Morgan and Gottlob Frege should be considered cofounders of mathematical logic, along 

with Boole.
3
 I will refer to their new logic as “mathematical.” This new logic was characterized 

by an algebra. This means a system of symbols and their manipulations. Logic had advanced far 

enough that it could be operated by rules very similar to algebra. Logic could now be calculated, 

it was now a calculus. The turn after Boole led down a road to increased interaction with 

mathematics in the form of set theory. On this road logic shed the baggage of the syllogism, 

psychology, natural language, and exclusive disjunction. This thesis will end with Georg Cantor 

and the creation of the completed corpus of set theory.   

 Traditionally this history has largely been seen as the innovation of Georg Cantor in the 

field of mathematics. Historians depict set theory as an innovation that is historically isolated 

from logic. They tend also to see set theory as isolated from pre-Cantorian mathematics. This 

paper will take an approach that gives greater emphasis on the influence of and parallel 

development with mathematical logic. This paper will argue that George Boole and Gottlob 

Frege created a new logic. This logic was different from that which preceded it in its aims. Frege 

                                                 
3
 The historians Massimo Mugnai and Daniel Merrill have advanced these views.  
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and Giuseppe Peano then put a philosophical movement behind this new logic. This new 

philosophy found an analog in considerations of the infinite. Infinity became mixed with logic 

and logicism and out of this alliance came set theory. The historiography of set theory tends to 

begin its histories with Cantor.
4
 This thesis will pick up set theory earlier with the Czech 

mathematician Bernard Bolzano. I argue that Bolzano framed the investigation that Cantor would 

make.      

This paper will break from tradition in another way. It is written by an author immersed 

not in the field of mathematics but rather history. Traditionally investigations such as this one 

have been carried out by historians of mathematics who have spent their academic career in 

mathematics departments. The historian of science Thomas Kuhn wrote in 1968, though he 

spoke instead of the history of science: “Until very recently most of those who wrote the history 

of science were practicing scientists, sometimes eminent ones. Usually history was for them a 

by-product of pedagogy.”
5
 Kuhn’s description of the condition of the history of science could be 

a description today for the history of mathematics. The history of mathematics when taught is 

often taught as a way to make mathematical ideas accessible to students. Admirable as this is, it 

will never lead to a sophisticated discipline. A view as to why this is important again comes from 

Thomas Kuhn. Kuhn, himself trained as a physicist, wrote in 1971: 

 the men who study the development of a discipline from within that discipline’s parent 

 department concentrate excessively on the internal logic of the field they  study, often 

 missing both consequences and causes in the larger cultures. I remember  with deep 

 embarrassment the day on which a student found occasion to remind me that Arnold 

 Sommerfeld’s relativistic treatment of the atom was invented midway through the First 

 World War.
6
 

                                                 
4
 One need only look at the titles of books in this field, e.g., Ivor Gratten-Guiness Search for Mathematical 

Roots, 1870-1940. 
5
 Thomas S. Kuhn, The essential tension: selected studies in scientific tradition and change (Chicago: University of 

Chicago Press, 1977), 105. 
6
 Ibid, 153. 
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I am not accusing today’s math historians of committing such an error. What Kuhn voices here is 

the danger in having experts in a field study the development of that field. So what does a 

historian offer to the study of nineteenth century logic? The nineteenth century was a period of 

strong intellectual currents and political upheaval, particularly on the continent. Analysis of this 

sort of extra mathematical influences is what the historian can offer.  

The writer J.N. Crossley describes the early history of mathematical logic as two strains 

occupied by five pre-1900 thinkers. These are George Boole, Gottlob Frege, Bernard Bolzano, 

Richard Dedekind, and Georg Cantor
7
. In addition to these five I will provide a chapter on 

Giuseppe Peano. The justification for this is that Peano’s Principles of Arithmetic was an 

important bridge between Boole and a consideration of the natural number system. Peano marks 

a combination of elements of Boole’s and Frege’s systems. He was, along with Frege, a founder 

of logicism. It was logicism that had a profound effect on the work of Cantor and Dedekind. 

Logic, from Frege on, had been an attempt to find a foundation for science and mathematics. 

Logic and set theory were after the same thing. Many parts of the logical systems I will cover 

were actually equivalent to what was happening in set theory. This led to the formation of a 

research environment between Richard Dedekind, Gottlob Frege, and Giuseppe Peano. 

Crossley’s diagram describes the set theoretical strain crossing from Cantor to the logical strain 

sometime after Bertrand Russell. I will argue that this eventual cross-pollination began in the 

nineteenth century as a result of developments in the search for a foundation for mathematics. 

The logical strain began with Boole and was influenced by logicians farther back. The set 

                                                 
7
 John N. Crossley, What is mathematical logic? (New York: Dover, 1990), 2. 
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theoretical strain began with Bernard Bolzano’s Paradoxes of the Infinite and was influenced by 

problems in the use of the infinite in mathematics. 

A cursory inspection of this work will show a heavy influence on the subject of logic 

from Britain. Of the first two chapters C.S. Peirce is the only non-British mathematician 

discussed. This is indicative of dominance in the first half of the nineteenth century of British 

logic. In the later chapters of this work the dominance shifts to the continent, particularly 

Germany and Italy. This is a part of the following narrative where we must heed Kuhn’s 

cautionary tale and look outside of the history of mathematics and into the larger intellectual 

trends and in some cases political trends of the day. Raymond Wilder writes:  

Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be 

born at a certain time; rather, great mathematicians were made because the cultural 

conditions–and this includes the mathematical materials–were conducive to developing 

them.
8
  

 

I will show how Britain and then Germany were conducive to logic and then set theory. This 

thesis will look at the larger context of British and continental intellectual and political history. 

While there is ample scholarship on the history of logic and set theory, the chronological 

focus of this work is novel. Most historical studies of set theory start with Cantor and go forward 

into the early 20th century. When studying mathematical logic, historians will start with 

Gottfried Wilhelm Leibniz and go forward to Peano, Boole, or Frege. N.I. Styazhkin’s work The 

History of Mathematical Logic from Leibniz to Peano is perhaps the most cited work in this 

thesis. Nonetheless, Styazhkin’s book suffers from just this bias. He stops short of discussing 

Bertrand Russell. Drawing the line at Peano, apparently Styazhkin believed that this large chunk 

of history had an ending in Peano. In this work there is also very little mention of Georg Cantor 

                                                 
8
 Raymond Wilder, Introduction to the Foundations of Mathematics (New York: Wiley, 1952), 278. 
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or Richard Dedekind. I believe this is because Styazhkin believes first, that logic from Leibniz to 

Peano was largely separate from set theory; and second, he believed that logic after Peano 

changed radically in its relationship with set theory. This is just the view that I want to combat. 

The reason for my approach is that mathematical logic brought up questions of where logic was 

supposed to fit into mathematics. This can be seen in the logicism that Frege and Peano would 

take up. Peano and Frege both had strong analogs in their systems to set theory. It is Peano who, 

among the logicians of his time, most closely shadowed early set theory. My approach as applied 

to set theory begins with Bernard Bolzano and continues to treatments of Richard Dedekind and 

Georg Cantor. Throughout this treatment we see interaction with logic. Dedekind interacted 

intellectually with Frege and Peano. 

The chronological treatment of the subject matter adopted here is justified on two counts. 

First, almost all the figures were continental. This makes a national treatment unlikely since so 

many of these figures were German, they were almost all in close geographic proximity to each 

other. This sort of treatment would make for a lopsided narrative. Second, the ideas of these 

figures were disseminated effectively through the literature of the time. The only mathematician 

who did sink into obscurity for a time was Bolzano, but he was rediscovered in time for the later 

figures I cover to know of his work. 

The concept of cross-pollination is central to this discussion. Since what is being argued 

for is a pre-Russellian cross-pollination between logic and set theory we should flesh this idea 

out. The term cross-pollination in most cases means that thinkers in these two strains read each 

other, but this not always the case. In some circumstances both strains actually collide, as we will 

see happened with Dedekind, Frege, and Peano. In this case shared results are as important as 

shared reading lists. Cross-pollination should be taken as generative. That is, an innovation in 
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one strain spurs innovation in the other. This will be seen in the influence that logicism had on 

set theory, and the influence set theory had on the discussion of sequences in logic.           

The question may justly be asked: Why is a reappraisal of the development of 

mathematical logic and set theory important? The first answer I will offer is for the historian; it is 

that we have to reconsider whether Cantor would have discovered set theory were it not for the 

prior researches of Bolzano and Dedekind, and the intercession of logic and logic’s own 

development in the nineteenth century. But scholars outside of history may ask why this is 

important. For them I diverge into the philosophy of mathematics. I believe that the questions 

philosophers of mathematics deal with are largely historical in their answer. If we want to know 

something about how mathematics gets done we ask: How has mathematics gotten done? When 

the philosopher of mathematics Michael Resnik says that mathematics is pattern seeking, what 

we ought to do is look at a history like that presented here and ask: Was this pattern seeking?
9
 If 

so then well and good, and we go on to the next history. If not then Resnik has a problem, and he 

has to either show us where we went wrong, or amend his theory. So the following treatment of 

history is important because this is just how questions in the philosophy of mathematics get 

answered. The third answer is for the mathematician. It is that the developments covered in the 

following pages tell us how logic can relate to mathematics in the future. Many of these figures 

were concerned with how the new logic could be so mathematical, and yet it not be obvious 

where logic fits into mathematics. Their answers can guide us in an age where logic is divided 

between philosophy and mathematics.         

 

 

                                                 
9
 For more on Resnik’s view of mathematics see:  Resnik, Michael D. Mathematics as a Science of Patterns. 

(Oxford: Clarendon Press, 1997).  
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1: Logic Before Boole 
 

Introduction  

Logic before 1847 was of a different kind from logic after. I will begin by terming pre-

1847 logic as “symbolic logic” and post-1846 logic as “mathematical logic.” Symbolic logic 

symbolized parts of natural language but it did not comprise a calculus. What this means is that 

there was no way to conduct calculations with logic. The symbolic turn in logic began with 

Gottfried Leibniz (1646-1716). In this chapter it means a logic that to some degree at least, 

allows calculations.
10

 In this chapter I want to accomplish the following: 

1. I want to show the state of logic before 1847 so that the accomplishments of figures 

discussed later will have a context for the reader.   

2. I also want to argue that the logic in this chapter, with the exception of Augustus De 

Morgan was not “mathematical.” N.I. Styazhkin wrote of Leibniz and his founding of symbolic 

logic: 

Here Leibniz developed one of his favorite ideas: “an alphabet of human thought that 

makes it possible to deductively derive new ideas by means of definite rules for 

combining symbols.”  Here the logical idea of pasigraphy is clearly distinguished from the 

linguistic idea of creating a “universal language.”
11

 

 

Leibniz’s desire to develop “an alphabet of human thought” dominated logic until 1847, when 

the work of George Boole began to turn away from the domination of language and psychology 

                                                 
10

 An example of a calculation in logic would be deriving the conjunctive normal form from a proposition or  

constructing a proof. 
11

 N.I. Styazhkin, History of Mathematical logic from Leibniz to Peano (Cambridge, Mass: The M.I.T. Press, 1969), 

65. 
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in logic. Logicians failed to develop mathematical logic before the year 1847. Their logic was 

deeply psychological and based on natural language. They were also overwhelmingly concerned 

with the syllogism. There were four mechanical problems with this logic; these were: 

quantification of the predicate, negation, disjunction, and the empty class. Each of these will be 

discussed with respect to the logicians Augustus De Morgan and John Stuart Mill, and several 

ancillary logicians. 

The reason for making George Boole a turning point in the history of logic is captured 

well by the historian Massimo Mugnai. Mugnai ties together Leibniz and the founding of 

mathematical logic when he writes: “On a larger scale, however, it seems to me that Boole and 

Frege complete a process which began in the second half of the seventeenth century.”
12

 There 

can be little doubt that Mugnai is referring to Leibniz here. This “process” which we may take as 

the symbolic agenda was begun in the seventeenth century. With Boole and Gottlob Frege (1848-

1925) the struggle to algebratize logic ended. This chapter then is about this struggle. Another 

strong characteristic of this period was the emphasis on the syllogism. One has only to glance at 

a logic book from the period to see page after page devoted to the syllogism. The syllogism is a 

three part argument in which two premises imply one conclusion. It was seen as the proper and 

rigorous method of thinking, the ratiocination. It was believed to be the fundamental building 

block of thought. The task of the logician then was to categorize the syllogisms and arrive at an 

inherent organization of logic. The logic of this period then was characterized by incomplete 

symbolization, incalculable, and centered on the syllogism. 

 

                                                 
12

 Massimo Mugnai, “Logic and Mathematics in the Seventeenth Century,” History and Philosophy of Logic. 31, no. 

4 (2010): 311.  
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Logic Before 1800 

This chapter will begin with a brief explication of the history of logic. The dominant 

force in logic for centuries had been the Priori and Posteriori Analytics of Aristotle. It is in these 

foundational works that Aristotle gives us the syllogism. The second great gain in logic was the 

work of the German mathematician and philosopher Gottfried Wilhelm Leibniz (1646-1716). 

Most of Leibniz’s logical work was not published during his life. The search for a universal 

logical language that we will see in the nineteenth century was presaged by Leibniz. The first 

half of the nineteenth century saw expansive research in logic. This research, for the most part, 

took place in Britain. As will be shown in this and the next chapter there were political, 

economic, and intellectual currents that existed in the nineteenth century that simply did not exist 

in Leibniz’s life time. These will be explained later but it is important now to state that Leibniz 

really was ahead of his time and because of this his time did not support the large multinational 

research environment that this thesis will chronicle. The theme we will see in this chapter is that 

these logicians, with the exception of De Morgan, were not mathematical because they did not 

fully symbolize their systems. The aim of this class of logicians was not to make logic 

mathematical as, we will see, Boole did. There were logical spells that these logicians were 

under that did not affect Boole so much. Leibniz writes in the Monadology: 

 There are also Axioms and Postulates or, in a word, the primary principles which 

 cannot be proved and, indeed, have no need of proof. These are identical  propositions 

 whose opposites involve express contradictions.
13

 

 

Axioms such as Leibniz is discussing here will be used by Frege and especially Peano in the 

logicist program. An inchoate logicism can be said to have always existed in logic. Raymond 

                                                 
13

 Gottfried Leibniz, Discourse on Metaphysics, and The Monadology (Mineola, N.Y.: Dover Publications, 2005), 

52-53. 
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Wilder writes: “Leibniz, for instance, showed tendencies in this direction and would probably 

have gone further, to judge from his stand on the basic importance of a ‘logistics’.”
14

 Leibniz’s 

failure to write what Boole wrote must be seen as an outcome of the different aims the two 

logicians had. The historian of logic Massimo Mugnai argues that seventeenth century logic was 

not mathematical because the aims were different, not because the mathematicians were less 

capable. One of the aims of this thesis is to chronicle the change in the aims of logicians. 

Although we will be taking George Boole’s 1847 work as the start of mathematical logic it is 

worth repeating that there has been debate on this. The historian Daniel Merrill believes that De 

Morgan’s system has just as much claim to the term mathematical logic as Boole’s does.
15

 In this 

thesis I will be agreeing with Merrill that mathematically the two systems accomplish about the 

same thing. I will cover Boole in depth in a separate chapter for historical reasons. His system 

was more influential than De Morgan’s. As we will see the founding of mathematical logic is 

really too complex to have any one founder.     

Augustus De Morgan   

De Morgan straddled the line between symbolic and mathematical logic. He and Boole 

were contemporaries, though De Morgan was Boole’s senior. He was a professor of mathematics 

at the University of London. It was this association with the newly founded university that we 

will see brought him into contact with exiles from other universities. The mathematician 

Raymond Wilder has adequately summed up the division of logic as follows: 

 And, whereas logic was traditionally a cut-and-dry rehash of the work of Aristotle—

 with great concentration on the syllogism, etc.—it has today become a lively and 

                                                 
14

 Wilder, Introduction, 230. 
15

 This view can be found in Daniel Merrill, “Augustus De Morgan’s Boolean Algebra.” History and Philosophy of 

Logic. 26, no. 2 (2005). 
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 growing field of investigation, known under the name of symbolic logic or 

 mathematical logic.
16

 

 

This was still true of De Morgan whose work was plagued by an Aristotelian like emphasis of 

the syllogism. Augustus De Morgan was a British logician. He was older than Boole but still a 

contemporary. De Morgan taught at the University of London. His most influential work, and the 

one that will mostly be discussed here is Formal Logic (1847). De Morgan had taken the 

opposite side of the quantification debate from Boole. Today De Morgan is being redeemed as 

someone who had equal, if not influential, accomplishments to Boole. Much of what Boole 

would accomplish in 1847 was closely aligned to investigations De Morgan was making. De 

Morgan is best known for his laws which state: If it is not the case that A or B is true, then we 

may infer that A is not true and B is not true; also if it is not the case that A and B is true, then we 

can infer that either A is not true or B is not true. Stanley Burris writes of De Morgan: 

Augustus De Morgan was a transitional logician, educated in the traditional logic that was 

solidly based on the Aristotelian syllogism, active in the reform of logic, and supportive 

of the new developments (of Boole) in logic.
17

      

 

De Morgan stopped short when it came to symbolizing negation. Burris points out that De 

Morgan symbolized negation only once as “(F)” and afterwards simply wrote “denies F” for the 

negation, this prevented him from developing a complete algebra.
18

 De Morgan instead handled 

negation almost exclusively with the complement of the class. The complement of a class is the 

class of things not contained in that class. The complement of the class of cats would be the class 

of non-cats. Thus, “not-X” would be written as “x” which is the complement of “X.”
19

 Negation 

                                                 
16

 Wilder, Introduction, 56. 
17

 Stanley Burris, Contributions of the Logicians(2001), University of Waterloo,  

http://www.math.uwaterloo.ca/~snburris/htdocs/LOGIC/LOGICIANS/notes1.pdf (accessed 6/13), 27. 
18

 Ibid, 28. 
19

 The complement of a class is everything excluded by that class. 

http://www.math.uwaterloo.ca/~snburris/htdocs/LOGIC/LOGICIANS/notes1.pdf
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was couched in the complement; it could not be manipulated. There was no separate character 

for negation that could be manipulated. This development would have to wait for Frege.  

 De Morgan became embroiled in a debate over the quantification of the predicate with the 

Scottish logician William Hamilton. Quantification centers around the question: what do 

propositions about classes look like from the predicate’s viewpoint? For De Morgan “all A are B” 

implies “all B are A.” If De Morgan wanted to express “all A are B, but not all B are A” he would 

have to use something like Boole’s “v”
20

 that is he would have to write “all A are B” and “some 

B are A.” In his System of Logic (1843) John Stuart Mill characterizes the debate. The debate 

actually pertained to who had developed a sufficient system to quantify the predicate. De Morgan 

was the victor, but not because he was first, but rather because Hamilton never quantified the 

predicate sufficiently.
21

 Boole mentions this debate as the main impetus for writing The 

Mathematical Analysis of Logic (1847). Hamilton took the opposite tack and argued that “all A 

are B” should be interpreted as implying that “some B are A.” “A = B” should be stated as “all A 

are all B.”
22

  

 De Morgan’s claim to co-founding math logic comes from his work Formal Logic. In 

Formal Logic, De Morgan confronts the problem of the null class. This problem can be stated in 

the following example. Take the proposition: 

 “All X are Y”    

Does this imply that, 

(1) “All Y are X” 

                                                 
20

 This will be discussed in the next chapter. 
21

 There is some debate on this point, see the footnote in the next chapter. If interested in Hamilton’s quantification 

theory I can suggest W. Bednarowski, “Hamilton’s Quantification of the Predicate”, Proceedings of the Aristotelian 

Society.  
22

 John Stuart Mill, A System of Logic, Ratiocinative and Inductive, Being a Connected View of the Principles of 

Evidence and the Methods of Scientific Investigation (London: Longmans, green, and Co, 1884), 113. 
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Or does it imply: 

(2) “Some Y are X” 

Or, is it possible that: 

(3) “No Y are X” 

This problem is related to the debate over the quantification of the predicate. That debate was 

between the first two interpretations. The third interpretation was not considered possible to 

these logicians. There was one empty class and that class was more of an operation than an 

actual class. To understand this last possibility we need to consider the proposition “all unicorns 

are creatures.” It seems that to say that the propositions “all creatures are unicorns” and “some 

creatures are unicorns” are absurd. But if all unicorns are creatures than how is it that no 

creatures are unicorns? The answer is that the null class of unicorns was being manipulated as a 

purely logical entity. The term “unicorn” is simply a mask donned by the empty class. Unicorns 

were ignored. What is important to take away from this is that logicians of the period were taking 

as a sort of axiom that if a class was being named it was because something fell under it. This 

issue would not be fully handled until the implicational logic of Frege.  

 Stanley Burris argues that De Morgan did not accept the empty class or universe class. 

This is true in so far as we mean a metaphysical universal class.
23

 But, as Daniel Merrill 

correctly points out, De Morgan did allow for “U” to symbolize the “universe of discourse.”
24 

This is the logical universe of propositions. De Morgan writes in Formal Logic: 

If, the universe being the name U, we have a right to say ‘every X is Y,’ then we can only 

extend the universe so as to make it include all possible names, by saying ‘Every X which 

is U is one of the Ys which are Us,’ or something equivalent.
25

 

                                                 
23

 Burris, Contributions, 4. 
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De Morgan means U as the universe of possible names. As with the other terms De Morgan 

symbolized negation with the complement of the term, he continues this practice with “U.” u 

symbolizes the complement of the universal class. That is the empty class. The empty class is not 

used in categorical propositions, these are AEIO. In De Morgan’s Formal Logic the “u” is to 

denote nonexistence and is only to be used when a literal translation from natural language is 

desired. Thus, the categorical proposition “E” can be written two ways for De Morgan but 

preference is given to the first
26

: 

 

 X.Y = XY)u 

 

The right side of this equation states that the members that are common to X and Y are all 

members of the empty set. This is just a way of saying that the members that are common to X 

and Y do not exist. De Morgan’s notation is to be interpreted in the following way. A period 

denotes disjoint classes. A comma is disjunction, this is similar to union in set theory. A 

parentheses, such as P)Q signifies class membership. So this would be “All P are Q.” The colon 

represents the proposition O. So P:Q signifies “Some P is not Q.”
27

 The above example of “all 

unicorns are creatures” would then be written in De Morgan’s notation as: 

 X)Y 

 X)u 

  

 Therefore   Y)x 

 

This syllogism reads “all x’s are y’s,” “the class of x’s is empty,” therefore “no y’s are x’s.” As 

we saw earlier, the use of “u” has more to do with natural language for De Morgan than the 
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actual structure of thought. It is merely a quirk of our language that we have words like 

“unicorn” or “chimera.” 

Disjunction (or) at this point was exclusive and would continue to be so throughout 

Boole’s career. Disjunction had to be made inclusive before mathematical logic could be fully 

formulated. Consider the statement “either it is sunny outside, or it is not sunny outside.” These 

possibilities exclude each other; it cannot be both sunny and not sunny. These logicians, and even 

Boole, took disjunction solely in this sense. Now, consider this statement “I hope it is not cold or 

windy today.” By this we usually mean that we also hope that it is not both. Here the word “or” 

is doing something different than in the preceding example. It is inclusive, I also do not want it to 

be both cold and windy. When logicians use disjunction there are three situations which need to 

be symbolized; they are illustrated below along with their respective symbolizations:
28

 

 

 

These two classes are disjoint, that is they have no members in common. In such a situation there 

is no difference in the use of exclusive or inclusive disjunction. 

Inclusive disjunction  A v B 

Exclusive disjunction  A v B 

                                                 
28

 Interpret these symbols as v = disjunction, ˄  = conjunction, and ~ = negation. In the diagrams below each circle 

indicates a class and the striped regions contain the objects that the logician is trying to capture with his logic. 
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These two classes have members in common. The logician who tries to capture both classes 

along with the members in common will have no trouble in using inclusive disjunction. 

Exclusive disjunction is untenable in this situation. This is because this disjunction would have 

to assert both A and B and not both A and B.  

Inclusive disjunction  A v B 

Exclusive Disjunction Conceptual contradiction 

 

In this example the logician wishes to express two classes that overlap but not the members they 

share. Exclusive disjunction expresses this situation in the same manner that it expressed the 

disjoint classes above. Inclusive disjunction is more complex here and the logician is required to 

conjoin two propositions. 

Inclusive disjunction  (A v B) ˄ ~ (A˄B) 
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Exclusive disjunction  A v B 

Both inclusive and exclusive disjunctions run into difficulties. In the third example inclusive 

disjunction requires two propositions to deal with this situation, whereas exclusive disjunction 

requires only one proposition. However, in the second example exclusive disjunction runs into a 

more serious difficulty. Because exclusive disjunction states “A or B but not both” we cannot 

then posit a conjunction such as “A and B.” This would in effect be asserting “A or B but not 

both, and both.” What this misunderstanding of disjunction stems from is that these logicians 

were following the intuitive understanding of language too closely. They saw the use of language 

as containing, in situ, a logic proper. But human language makes logical mistakes. It was a 

realization of this fact that would spur Frege. Throughout the nineteenth century exclusive 

disjunction would be phased out. But even as late as 1906 H.W.B. Joseph would write of 

disjunction: 

 In a disjunctive argument one premise is a disjunctive proposition; the other is a 

 categorical proposition, affirming or denying one of the alternatives in the former. 

 From these follows as conclusion a categorical proposition, denying or affirming the 

 other alternative.
29

  

 

It should be pointed out here that Joseph’s book contained in it a non-mathematical logic where 

the decision as to an exclusive or inclusive disjunction was up to the author. Frege also 

acknowledged both disjunctions, but he used only inclusive. Nonmathematical logic had no 

horse in this race.  

 De Morgan to a small extent foretold one-to-one correspondence by looking at the 

correspondence of intersections between lines drawn from the vertex to the base and a line 
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cutting the triangle parallel to the base.
30

 This is a concept that will be encountered in just about 

every chapter of this thesis. It gains its greatest force in set theory and the proofs of Georg 

Cantor. It lends credence to the argument of this thesis that one-to-one correspondence is first 

being mentioned in a chapter solely concerning logicians. This may be taken as the first of the 

cross pollinations. 

John Stuart Mill  

De Morgan was only one of a large group of logicians working in Great Britain at this 

time. John Stuart Mill is perhaps known least for his work in logic. Rather, what people know of 

Mill comes from his two great works in philosophy, On Liberty (1859), and Utilitarianism 

(1861). Mill’s System of Logic (1843) was one of the most important works of logic in this 

period. Mill held no academic post but rather was a clerk in the East India Company and 

eventual Member of Parliament. Boole cites Mill’s system of logic in The Mathematical Analysis 

of Logic. In System of Logic Mill defines logic as: 

the science of the operations of the understanding which are subservient to the estimation 

of evidence: both the process itself of advancing from known truths to unknown, and all 

other intellectual operations in so far as auxiliary to this. It includes, therefore, the 

operation of Naming; for language is an instrument of thought, as well as a means of 

communicating our thoughts.
31

 

 

What is important here is the linguistic nature of logic. Mill uses words like “understanding” and 

“naming,” he is interested in logic which for him is thought and communication of thought. 

Logic then is about thought as language. What is perhaps more important is what logic is not for 

Mill. He writes: 

 There are other more elementary processes, concerned in all thinking, such as 

 Conception, Memory, and the like; but of these it is not necessary that Logic should 
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 take any peculiar cognizance, since they have no special connexion with the problem 

 of Evidence, further than that, like all other problems addressed to the understanding,  it 

 presupposes them.
32

 

 

This is a distinction that Frege would make in the Begriffschrift. Frege will formalize the 

conceptual exactly because it is more fundamental. This difference is between sentence and 

proposition.        

         Another prominent logician of the day was William Whewell. System of Logic was 

published in 1843; three years earlier Whewell published his work Philosophy of the Inductive 

Sciences (1840). In his autobiography Mill writes of the occasion of the publication of Whewell’s 

book: 

It gave me what I greatly desired, a full treatment of the subject by an antagonist, and 

enabled me to present my ideas with greater clearness and emphasis as well as fuller and 

more varied development, in defending them against definite objections, or confronting 

them distinctly with an opposite theory.
33 

  

    

Mill says in his autobiography that Whewell’s book was the summation of the position he was 

attacking. Mill’s attack on Whewell’s position was essentially an attack on non-empirical or non-

logical propositions. This has traditionally been called metaphysics. We see here the influence 

the Positivism of the day had on Mill. We will see more of this later in Mill’s correspondence 

with August Comte. Mill writes later in his autobiography: 

 The notion that truths external to the mind may be known by intuition or  consciousness, 

 independently of observation and experience, is, I am persuaded, in these times, the great 

 intellectual support of false doctrines and bad institutions.
34
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 Mill’s attack on metaphysics takes center stage in System of Logic. The System of Logic 

treats the concept of number. Mill asserts that a difference in quantity is empirical. This would be 

a point of contention by Frege. Mill writes: 

Let us imagine two things, between which there is no difference, (that is, no 

dissimilarity,)  except in quantity alone: for instance, a gallon of water, and more than a 

gallon of water. A gallon of water, like any other external object, makes its presence 

known to us by a set of sensations which it excites. Ten gallons of water are also an 

external object, making its presence known to us in a similar manner; and as we do not 

mistake ten gallons of water for a gallon of water, it is plain that the set of sensations is 

more or less different in the two cases.
35

 

     

In number Mill believes that we compare apparent or imagined sensations that make number 

plain to see. In a sense we imagine one and then ten gallons of water. The definitions of these 

numbers then are just the sensations they would cause in us. Mill goes on to write: “In like 

manner, a gallon of water, and a gallon of wine, are two external objects, making their presence 

known by two sets of sensations, which sensations are different from each other.”
36

 Number then 

is a concrete adjective, like “red,” appended to a subject. Mill then writes: 

 

What is the real distinction between the two cases? It is not within the province of Logic 

to analyse it; nor to decide whether it is susceptible of analysis or not. For us the 

following considerations are sufficient. It is evident that the sensations I receive from the 

gallon of water, and those I receive from the gallon of wine, are not the same, that is, not 

precisely alike; neither are they altogether unlike: they are partly similar, partly 

dissimilar; and that in which they resemble is precisely that in which alone the gallon of 

water and the ten gallons do not resemble.
37

 

 

This difference for Mill is quantity. It is not for logic to determine this. Mill would probably say 

that it is psychological. This is a main point of disagreement between Mill and Frege. Frege 

attacked Mill over this in The Foundations of Arithmetic.  
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Logic in the Intellectual Scene 

 A discussion of De Morgan gives the opportunity to reach out of the history of logic for a 

moment and discuss the larger intellectual history taking place in Britain. There was a general 

intellectual current that the logic discussed so far was a part of. The historian Joan Richards 

writes of De Morgan’s program in mathematics: 

 The roots of this program were embedded in the eighteenth century,  when a 

 determined group of Englishmen struggled to reform the Anglican Church. Over  the 

 course of the 1770s and 1780s, Unitarians like Theophilus Lindsey, Joseph Preistly, 

 and, in the younger generation, William Frend worked to define the parameters of a 

 rational religion.
38

 

 

William Frend was a Unitarian preacher who was also a staunch pacifist. He had been kicked out 

of Cambridge University and met De Morgan at the University of London. There De Morgan 

was a professor of Mathematics. He befriended Frend and even married his daughter Sophia.
39

 

What could bring a mathematician together with a Unitarian preacher and political apostate? 

There was a common belief in British intellectual circles that rational thought could mitigate the 

ills of society. Logicians found a role in solving society’s ills and this is why in this period there 

was such an emphasis on ratiocination. De Morgan wrote: 

 

 This language, without reference to any of its applications, is instrumental in 

 furnishing the  mind with new ideas, and calling into exercise some of the powers 

 that most peculiarly distinguish man from the brute creation.
40

 

 

For De Morgan reason is what made humans better able to survive in the world. His logic then 

was a way to enhance this human faculty for the betterment of British society. John Stuart Mill 

also saw logic as a panacea to society’s problems. Mill titled chapter six of System of Logic “On 
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the Logic of the Moral Sciences” and includes chapters of fallacies of practical reasoning. Mill is 

himself an example of the reach of logic outside of itself. Mill carried on a long correspondence 

with the French Positivist thinker August Comte. And from these letters it can be inferred that 

Mill was also Positivist. Positivism was also imbued with this aim of social betterment. The 

historian Geoffrey Bruun writes of Positivism: “The prestige of the priests and the philosophers 

dimmed before that of the scientists.”
41

 The question for us is: What role did logic have in 

positivism? This can be answered by looking at letters from around the time Mill published 

System of logic and sent a copy of it to Comte. In his May 16
th

 1843 letter Comte responds to 

System of Logic.
42

 In this letter Comte states that he agrees almost in full with Mill’s system 

except that he questions the probability logic Mill introduces. Mill states a quality of probability 

that Comte may have found unacceptable. In System of Logic Mill, Quoting the French scientist 

Pierre-Simone Laplace, writes: “‘Probability,’ says Laplace, ‘has reference partly to our 

ignorance, partly to our knowledge…’.”
43

 Mill later writes: “We must remember that the 

probability of an event is not a quality of the event itself, but a mere name for the degree of 

ground which we, or some one else, have for expecting it.”
44

 Probability, Mill admits, is the 

mathematics of ignorance. One can see here why Comte would have a problem with probability. 

As Mill freely admits, probability does not touch the world. It does not investigate the world but 

only replaces the investigation with calculated guessing. This goes against positivism. The logic 

of probability was pursued more vehemently in Britain than in Comte’s France. One recalls the 

British logicians John Venn and George Boole, who will be discussed in the next chapter. 
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Nonetheless, the point here is that Comte and Mill had more reason to come together in 

friendship over the betterment of society than to fight over the legitimacy of probability. One 

could say the same for De Morgan and William Frend. But this view of the purpose of logic may 

have had consequences. This pragmatic approach is perhaps why logic did not hit full 

mathematical stride in Britain but rather in Germany and Italy. 

Conclusion 

Logic in this period posed the questions that Boole would answer in 1847. The answer 

would revolutionize logic. They would also overturn much of the program outlined in this 

chapter. These were disjunction, the null class, the concept of number, emphasis on natural 

language, emphasis on psychology, and negation. These thinkers were occasionally ahead of 

their time. De Morgan posited univocal correspondence which would become a central theme in 

the theory of sets throughout the nineteenth century.     
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2: The Reflected Image of Logic  
 

Introduction 

 

 Heidi White and Michael Shenefelt outline the difference between the symbolic logic 

discussed so far and the new mathematical logic when they write: “Because ordinary words are 

excluded, our knowledge of what any words mean is excluded too. This is what makes symbolic 

logic fundamentally different from the logic of the past.”
45

 A large part of the logic discussed so 

far, with the exception of De Morgan’s system, was not fully symbolized. These first two 

chapters are about the period when logic became fully symbolized and hence mathematical. The 

story of this symbolization, in part, has already been told in the preceding chapter. The historian 

Daniel Merrill argues that De Morgan co-discovered the algebra of classes. Boole gets his own 

chapter because he was more widely read by later logicians than De Morgan was.  Of the 

systems George Boole and Augustus De Morgan developed, De Morgan’s system sank into 

anonymity, while it was Boole’s system that was engaged with by mathematicians in Europe and 

America. George Boole (1815-1864) was born in Lincolnshire, England. He received no 

university education and instead taught at private schools. He started his own school where he 

was headmaster. Boole’s mathematical ability would catch up with him though, and he was lured 

to academia. Academia here took the form of the University of Cork in Ireland. Boole died a 

relatively young man in 1864.     
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As novel as his logic may have been, there were many biases that remained in Boole’s 

system. His disjunction was exclusive and he had no means of negation. His main 

accomplishments lay in depsychologizing logic and in conceiving an interpretation of logical 

structures in a way that allowed logic to be treated like a branch of mathematics. For Boole logic 

was about the combination of symbols, not what the symbols meant. Boole was influenced by 

the logicians discussed in the last chapter. Early in The Mathematical Analysis of Logic he credits 

the quantifier debate between De Morgan and Hamilton with being the impetus for The 

Mathematical Analysis of Logic (1847). Boole was divorced from these logicians, he did not 

straddle the logics as De Morgan did. He was not as beholden to the syllogism as De Morgan 

was. It is true that De Morgan was less concerned with the syllogism than his predecessors, but 

he was not as able to break from it as Boole was. What Boole came to realize was that the 

syllogism indicated no underlying structure of logic, it was just something one could do with 

logic. 

Boole’s System 

 It was complete symbolization and algebraization that was the mark of the new 

mathematical logic that Boole brought to the world. Boole’s logic was published in three works 

The Mathematical Analysis of Logic (1847), a short paper titled “The Calculus of Logic” (1848), 

and The Laws of Thought (1854). The Mathematical Analysis of Logic was the first exposition of 

what would come to be called Boole’s system, but by the 1850’s Boole had become dissatisfied 

with his 1847 and 1848 treatment and set out to put forth his entire system; this effort would 

culminate in The Laws of Thought.  Boole states in the Laws of Thought that “the operations of 

Language, as an instrument of reasoning, may be conducted by a system of signs composed of 
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the following elements”
46

 Boole goes on to list these elements as “Literal signs,” “Signs of 

operation,” and “The sign of identity.” The literal signs consist of variables, the signs of 

operation consist of the logical operators, and the sign of equation is just “=.” Boole’s system 

was an algebra of classes. What is also central to Boole’s work is the interpretation of traditional 

symbolic logic into classes. Taking the variables a and b for classes ab is logical multiplication. 

This can be translated to English as describing “the class of objects that are common to both a 

and b.” For disjunction Boole used the addition sign.
47

 a + b then would be translated into “the 

class of objects that are common to a or to b.” Boole’s disjunction was exclusive. In every case 

of disjunction Boole imagines disjoint classes. This is because he wanted logical addition to be 

closely analogous to arithmetical addition. Logical disjunction of disjoint classes is analogous to 

arithmetical addition. If classes are allowed to overlap at all the analogy breaks down. Boole 

handles the complement of a class by positing the symbol 1 to stand for the universal class. The 

complement of a class would be handled by subtracting the class from the universal class as in 

(1-a) which means the class of not-a’s.
48

 0 is used as the empty class. Therefore, Boole would 

symbolize the proposition A as ab=a. He would symbolize proposition I as ab=v, “v” being an 

overlap. Boole writes: 

If some Xs are Ys, there are some terms common to the classes X and Y. Let those terms 

constitute a separate class v, to which there shall correspond a separate elective symbol v, 

then 

   

  v = xy, 

 

And as v includes all terms common to the classes X and Y, we can indifferently  interpret 

it, as Some Xs, or Some Ys.
49
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This new “v” along with his class interpretation of the traditional copulas meant that Boole could 

express “some A are B,” and proposition O as “some A are not B” algebraically respectively as 

“AB=v” and “A(1-B)=v.” As the historian William Kneale points out, Boole’s notation led to 

confusion. When one writes “ab=v” and “cd=v” one is tempted to say “ab=cd.”
50

 Boole would 

symbolize proposition E, such as “no a are b,” as ab=0.  Boole could write “ab=a” and “a” could 

be a subset or identical with “b.” De Morgan demanded that “a” be identical with “b.” If Boole 

wanted to express identity as De Morgan did, he could write “ab=a and ba=b” as he does in The 

Mathematical Analysis of Logic. This is how Boole handles the quantification of the predicate. In 

“v” we can see the grasping for the existential quantifier. This would be posited by the Italian 

mathematician Giuseppe Peano.     

 Boole developed rules for classes and in the case of the index law Boole has to break 

from his algebraic program in logic. Burris makes the point that Boole’s index law “x²=x” 

requires that “x” be a class and nothing else. Boole says himself that this is the only deviation 

from algebra. Boole was concerned with natural language; he wanted to represent what language 

is about in a rigorous way. Logic should show us, if anything, how language should be, not how 

it is. This is the ratiocinative program. Boole writes in The Mathematical Analysis of Logic:    

The theory of Logic is thus intimately connected with that of Language. A successful 

attempt to express logical propositions by symbols, the laws of whose combinations 

should be founded upon the laws of the mental processes which they represent, would, so 

far, be a step toward a philosophical language.
51

 

 

The emphasis on language would decline as mathematical logic became concerned with 

questions fundamental to logic. Psychologism and language are connected. Boole writes: 

For though in investigating the laws of signs, a posteriori, the immediate subject of 

examination is Language, with the rules which govern its use; while in making  the 

internal processes of thought the direct object of inquiry, we appeal in a more immediate 
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way to our personal consciousness.-it will be found that in both cases the results obtained 

are formally equivalent.
52

 

 

Boole was the forerunner, not the antagonist, to the more vocal anti-psychologism of Frege. N.I. 

Styazhkin writes of Boole’s philosophy of mathematics when he says: 

Their analysis usually leads to the conclusion that Boole can be considered a forerunner 

to formalism of the type associated with Hilbert with elements of psychologism in the 

spirit of John Stuart Mill.
53

 

 

Boole himself writes: 

 

They who are acquainted with the present state of the theory of Symbolical Algebra, are 

aware, that the validity of the processes of analysis does not depend upon the 

interpretation of the symbols which are employed, but solely upon the laws of their 

combination.
54

  

 

This quote is indicative of Boole’s supposedly formalist views. NI Styazhkin dismisses Boole’s 

formalism. He argues that Boole did indeed intend logic to be fundamental to mathematics. 

Styazkhin argues for a proto-logicism in Boole. He dismisses Boole’s psychologism when he 

writes: “Boole was a complete stranger to subjectivism; he recognized the existence of laws of 

thought as objective compulsory relations, independent of the will of the apprehending 

individual.”
55

 Styazhkin is a little off the mark. Boole believed what he studied was part of 

psychology, but an immutable part. It did not change from person to person. His system might 

better be called mathematical psychology. Boole’s system was not logicism, but he does not 

denounce such a program. What is most accurate to say on this count, is the historian’s answer; 

that Boole and logicism were not in the same historical theater, Boole having died in 1864.     

 An essential program of mathematical logic in the nineteenth century was an answer to 

the question: how does logic interact with mathematics? Logicians felt that if logic had come to 
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resemble mathematics in just about all is rules and operations then it was fair to ask what the 

subject of logic was.   As we will see mathematical logic took several different views of this but 

what was constant is an emphasis on this question. Massimo Mugnai describes Boole’s position 

on this question: 

Boole considered logic to be a branch of mathematics. For him the notion of class plays a 

central role in logic, and he conceives of logic as an activity centered on combining 

classes according to some well-specified operations.
56

 

 

The view that logic is just another branch of mathematics brings to mind what was said by the 

Austrian philosopher Ludwig Wittgenstein when discussing Bertrand Russell’s work in logic 

“Russell’s calculus is not fundamental; it is just another calculus.”
57

 This is one side of a 

fundamental debate in nineteenth century logic; the other side would posit that logic was not part 

of but rather fundamental to mathematics.  Boole did not consider his logic fundamental because 

to the contrary it was a mimicry of mathematics. Boole created an algebra of classes, that is, 

what its subject was. However, mathematical logic was just another algebra. Boole believed that 

with his work mathematics was no longer the science of quantity. So for him mathematical logic 

also had an effect on mathematics. Boole still believed that logic was part of mathematics. Since 

mathematical logic was certainly no science of quantity this collapsed the centuries old quantity 

paradigm in mathematics. Mathematics could no longer be thought of as only a science of 

quantity. We will see in the following chapters how mathematical logic came to be more than just 

a calculus for the mathematicians working on it. 

As seen in the above quote from Boole, logic was about the combination of symbols, not 

what the symbols stand for. This idea was central to the creation of mathematical logic and was 

the beginning of what would develop into a whole new way of looking at logic. This is a nascent 
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viewpoint that would be the seed of Frege’s rejection of the psychological in logic. One recalls 

Mugnai’s statement at the beginning of the previous chapter, this was one of the processes that 

began with Boole and ended with Frege. The historian William Kneale states that Boole 

depsychologized logic.
58

 The depsychologizing of logic is a mantle that would be taken up even 

more adamantly by Gottlob Frege. Depsychologizing logic meant that logic was no longer trying 

to mimick thought, or even to correct it, it was now more important that logic be a consistent 

system of symbols , operations, and their combination. 

 Boole handles the quantification of the predicate with the forms ab=a and a=b. Thus, 

Boole differentiates Hamilton’s “All A are some B” and “All A are All B.” Speaking of William 

Hamilton N.I. Styazkin writes: “His theory of quantification, complete, though not original, has 

to be considered among the stimulating prerequisites that opened the way for George Boole’s 

logical calculus.”
5960

 Boole writes in The Mathematical Analysis of Logic:  

In the spring of the present year my attention was directed to the question then moved 

between Sir W. Hamilton and Professor De Morgan; and I was induced by the interest 

which it inspired, to resume the almost-forgotten thread of former inquiries.
61

 

 

Boole disagrees with De Morgan’s quantification of the predicate when he writes:
62

 

 All Xs are Ys 

 All Ys are Xs   x = y 

  

 All Xs are Ys   x (1-y) = 0 

                                                 
58

 Kneale,“Revival of Logic”, 174. 
59

 Styazhkin, History of Mathematical Logic, 156. 
60

 It may be recalled that in the last chapter it was mentioned that Hamilton’s QP was not complete. This is the  

view of William and Martha Kneale in their work The Development of Logic. Their argument comes from  

Hamilton’s introduction of the term “any.” Styazhkin asserts that Hamilton’s quantification was complete. This  

debate centers around Hamilton’s interpretation of “any.” Both Styazhkin and Kneale agree that Hamilton takes  

this as equivalent to “all.” Take the proposition “all a is not all b” versus “any a is not any b ”, Hamilton equates  

these two and this is where Kneale(353) says that Hamilton went wrong. The second position seems to be  

describing the state of disjoint classes. The first seems to be asserting only that the situation a = b is not the  

case.   
61

 Boole, Mathematical Analysis,  1. 
62

 Ibid, 25. 



32 

 

Here we see that Boole interprets “all X’s are Y’s ” as meaning that only some Y’s are X’s. To 

say that X and Y are equivalent classes is interpreted as two statements. The problem of the 

quantification of the predicate is this, that, for example, when we use Boole’s notation “all A are 

B” is symbolized as AB=A. This can further be translated as “that which is common between A 

and B is just A.” Let’s take an example: 

 AB=A 

 

can be translated with three examples: 

 

 all zombies are human 

 

 all men are human 

 

 all humans are human 

 

The problem arises when we switch the A and B and ask what is common to B and A. We get 

three following equations: 

 BA=0 the class of things common to humans and zombies is the empty class  

 

 BA=v the class of things common to humans and men is some humans 

 

 BA=B the class of things common to humans and humans is the class of humans 

 

Boole states that BA=v is the common interpretation of AB=A. He handles the “class of all 

things common to humans and humans is the class of humans” with AB=A and BA=B. When it 

comes to zombies Boole waives his hands and simply disallows A or B to ever represent an 

empty class. Someone may object here that we could simply interpret “all zombies are human” 

with AB=0. This would put a rather severe restriction on our system though, since we could not 

discuss concepts. Conceptually— that is by definition—all zombies are human. What we want to 

say about zombies and humans and what we want to say about giraffes and humans is different. 

One case is disjoint, the other inexpressible.   
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 Boole cannot accept the empty class in a proposition like ab=a, if he is to accept that 

“some a are b” is written as ab=v in his system. If he did accept the possibility of the empty class 

in this case, then the top proposition would have to be some sort of conceptual proposition 

whereas the bottom proposition would be talking about a populated class. Does Boole believe 

that a proposition that involves an empty class simply cannot be written or does he believe that 

the proposition “all unicorns are animals” should be written as ab=0, that is it should be treated 

in the same way as disjoint classes? If the second option, then how would he handle a situation in 

which both A and B are empty, such as “all existent unicorns are existent mythical animals?” As 

with disjunction, Boole makes a judicious decision here. This time he will only deal with 

populated classes. The empty class that Boole allows is one in number and it is 0; variables 

cannot be empty classes. He must accept that a, b, v are classes that have members.   

The empty class is an important concept as is seen with the null set in set theory. Stanley 

Burris makes this point in the expression “XY=X  therefore some Y is X (or YX=v).” This 

cannot be accepted unless one disallows empty classes or states that the expression is false when 

“X” is an empty class. Burris describes Boole’s handling of the empty class in this case: “In 1847 

Boole translates “All X is Y” as the equation xy = x, and when X is empty this becomes the 

equation “0y = 0,” which is true in his system.”
63

 Boole was able to handle empty sets in a better 

way, in terms of having a logic be mathematical.    

By a class is usually meant a collection of individuals, to each of which a  particular name 

or description may be applied; but in this work the meaning of the term will be extended 

so as to include the case in which but a single individual exists, answering to the required 

name or description, as well as the cases denoted by the terms ‘nothing’ and ‘universe’ 

which as ‘classes’ should be understood to comprise respectively ‘no beings,’ ‘all 

beings,’
64
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For Boole the term “class” included the concept of the empty class. Boole treats merely 

populated classes differently from 1 and 0. This is his solution to the problem of unicorns. As 

Stanley Burris stated, the class of unicorns is just 0. 

Disjunction Becomes Inclusive 

 It was mentioned in the first chapter that the generation of mathematicians before The 

Mathematical Analysis of Logic was published used exclusive disjunction. Exclusive disjunction 

states the possibility of one thing or another but not both; for example, “either it will rain 

tomorrow or it won’t.” Boole retained exclusive disjunction keeping in line with logicians before 

him. Boole’s disjunction was also linguistic, meaning that it mirrored the way he thought 

disjunction was used in natural language. When disjunction is used in everyday speech it is as 

exclusive disjunction. That is, for Boole disjunction applied only to disjoint classes. For Boole it 

was a tool for combining two classes into one. When he discusses disjunction in Laws of Thought 

Boole is always talking about disjoint classes. Styazkhin writes: 

Addition, denoted by the symbol +. In the calculus of classes, Boole’s formula x+y 

corresponds to the union of the classes x and y minus their common portion; in the 

propositional calculus it is so-called “strict disjunction.”
65

 

 

The preceding chapter left the question of disjunction hanging. Boole’s calculus used exclusive 

disjunction. Inclusive disjunction would not come until the 1860’s. The first work to do this was 

the 1864 book Pure Logic by the British logician William Stanley Jevons, a former student of 

Boole’s. This work was published the year Boole died. The second work was the 1867 paper “On 

an Improvement in Booles Calculus of Logic” by the American Charles Sanders Peirce. Jevons 

writes of disjunction: 
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Take for instance, the proposition-‘A peer is either a duke, or a marquis, or an earl, or a 

viscount, or a baron.’ If expressed in Professor Boole’s symbols, it would be implied that 

a peer cannot be at once a duke and a marquis, or marquis and earl. Yet many peers do 

possess two or more titles.
66

 

 

Here Jevons makes the criticism of Boole’s system that it does not reflect how language is used. 

Jevon’s disjunction was also linguistic. What he disagreed with Boole about was language itself. 

Here we see the still strong concern with language and the psychologism that Frege would 

attack. Jevons chooses another example, this time from literature: “Milton has the expression in 

one of his sonnets-‘Unstain’d by gold or fee,’ where it is obvious that if the fee is not always 

gold, the gold is a fee or bribe.”
67

 Sonnets and the makeup of parliament aside, Jevons is fair in 

his criticism. Jevons offers another criticism of Boole and it is worth covering since it also deals 

with disjunction. Jevons writes: 

The term x, in his system, means all things with the quality x, denoting the things in 

extent, while connoting the quality in intent. If by 1 we denote all things of every quality, 

and then subtract, as in numbers, all those things which have the quality x, the remainder 

must consist of all things of the quality not-x. Thus x + (1 – x) means in his system all x’s 

with all not-x’s, which, taken together, must make up all things, or 1. But let us now 

attempt by multiplication with x, to select all x’s from this expression for all things. 

  x(x + 1 – x) = x + x – x 

Professor Boole would here cross out one + x against one – x, leaving one + x, the 

required expression for all x’s. It is surely self-evident, however, that x + x is equivalent 

to x alone, whether we regard it in extent of meaning, as all the x’s added to all the x’s, 

which is simply all the x’s, or in intent of meaning, as either x or x, which is surely x. 

Thus, x + x – x is really 0, and not x, the required result, and it is apparent that the 

process of subtraction in logic is inconsistent with the self-evident Law of Unity.
68

 

 

There is a contradiction here. Jevons is pointing out that Boole treats x + x as a numerical 

accumulation for which when x is then subtracted remains x. But this violates Boole’s own law 

as when he writes in The Mathematical Analysis of Logic, xx=x.
69

  Boole, following logic too 
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closely, violates what Jevons calls the age old law of unity, x + x = x, and he violates his own 

law, what he calls the index law.
70

 He states this law as: 

If from a group of objects we select the X’s, we obtain a class of which all the members 

are X’s. If we repeat the operation on this class no further change will ensue: in selecting 

the X’s we take the whole.
71

 

 

Boole believed this law to be the only difference between logic and algebra: 

The essential difference between logic and algebra, according to Boole, consists  in the 

fact that in the former the law xx=x (the principle of idempotence) always holds, whereas 

in the latter the equation x
2
=x holds only if x=1 or x=0, the two roots of the equation x

2
-

x=0.
72

 

 

Jevons would suggest that Boole would contradict himself by agreeing with the equation xx-x=x. 

Jevons would argue that truer to the spirit of logic would be to say xx-x=0. Styazkhin writes: 

Jevons felt that the Boolean definition of the operation of addition, x + y, in proposing the 

exclusion of the common portion of the classes x and y, entailed  insurmountable 

difficulties since it was unclear, in the case, how to interpret expressions of the type x + 

x.
73

 

 

What Jevons is really getting at though is that what we are witnessing is the friction between 

algebra and a logic of classes. As Jevon’s writes towards the end of Pure Logic: “Boole’s system 

is like the shadow, the ghost, the reflected image of logic, seen among the derivatives of logic.”
74

 

 Peirce’s criticism from 1867 is more technical. Peirce states inclusive disjunction in his 

paper when he writes in a foot note: “i.e., a+,b is the class of those things which are a not-b, b 

not-a or both a and b.”
75

 Peirce goes on to state the this in a more formulaic way: 

“a+b=(a+,b)+(a,b).”
7677

 Peirce’s concern here is that when adding classes, if there is overlap, the 
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only way to get an analog to the arithmetic operation of say 2+2=4 is with inclusive disjunction. 

Styazhkin states the arithmetic operator “+” as follows, “a + b denotes the class of those things 

which are either a or b but not both simultaneously.”
78

 Styazhkin goes on to write: “We can see 

that Peirce considered ordinary disjunction to be logical, and strict Boolean disjunction to be an 

arithmetic operation.”
79

 Pierce’s criticism of Boole’s system does not end at disjunction. He 

sketches three areas where Boole’s system is inadequate. Of these three the first is particularly 

important for our discussion. Peirce points out the inability of Boole’s system to speak about one 

member of the class, he writes: 

First. Boole does not make use of the operations here termed logical addition and 

 subtraction. The advantages obtained by the introduction of them are three, viz.,  they 

give unity to the system; they greatly abbreviate the labor of working with it; and they 

enable us to express particular propositions.
80

 

 

Peirce recognized that when Boole uses “v” it is not in a way that allows us to say “some a.” 

Rather, it is only used to point out that, for example, two classes partially overlap each other. 

ab=v is to communicate just that neither a nor b contain each other, but that they have some part 

in common. The first advantage Peirce points out was mentioned by Jevons. Peirce is pointing 

out the lack of cohesiveness of the half logical half algebraic system Boole has constructed. The 

second advantage has also already been mentioned and that is that disjunction involving 

overlapping classes is now analogous to arithmetic. The final advantage is that Peirce’s 

improvements allow for quantification. 

Boole and British Logic in the Larger Historical Context 

The years and location of these first two chapters hint at a larger fact in this history. These 

two chapters, with the exception of C.S. Pierce, involve British logicians from the years 1800 to 
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1850. The historian Volker Peckhaus states that Britain saw a rebirth in the early 19th century 

beginning with the work of Richard Whately. Peckhaus writes: 

One can even say that neglect of formal logic could be regarded as a characteristic feature 

of British philosophy up to 1826 when Richard Whately (1787-1863) published his 

Elements of Logic.
81

 

 

The years from 1826 to 1847 saw a steady increase of research in logic, much of which was 

outlined in the previous chapter. In that chapter we saw that the logicians up to Boole were 

engaged in a program of bettering society and the 1850’s and 60’s had this in common with the 

first half of the nineteenth century. The historian Geoffrey Bruun writes of the decades after 1847 

that: “A strong conviction had grown up that everything in the physical universe was behaving in 

a rational manner and that it was man’s disorderly mind that had led him to misread her.”
82

 There 

was also still a strong current of positivism in Europe that was perhaps even more at home than 

in the years leading up to the publication of The Mathematical Analysis of Logic. The artist 

Gustave Courbet summed up this positivism when he said: “Show me an angel and I will paint 

one.”
83

  

There is also a political context that logic took place in. Boole represents the highest 

point British logic would achieve in the nineteenth century. This is perhaps because of the 

relative political unrest on the continent in the first half of the nineteenth century. This unrest 

would come to a head in 1848 when the continent would erupt in nationalist movements. 

Although these movements were unsuccessful they began a narrative that would end in 

nationhood for Germany and Italy in the 1860’s and 1870’s. Bruun writes of Britain: “To Great 

Britain the middle years of the nineteenth century brought domestic tranquility, increasing 
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prosperity, and a worldwide prestige.”
84

 In opposition to the stability in Britain, Bruun writes of 

the relative unrest on the continent: “All the fervor, the fighting, the compromising and 

constitution-making of 1848-9 ended in central Europe with a virtual restoration of authoritarian 

principles.”
85

 The continent erupted in revolution in 1848. But, these nationalist movements 

failed. British political tranquility is a possible explanation why the island was so dominant in 

logic from the years 1826 to 1870. Revolutions distract from logical research. They distract 

because it is difficult to do logical research in times of civil unrest. They redirect students and 

professors from logical research, in favor of radical politics.  

 However, there is another factor. Michael Shenefelt and Heidi White suggest that it was 

the industrial revolution that was the impetus behind Britain’s revival and dominance of logic.
86

 

They argue that the Industrial Revolution convinced logicians of the power of mechanized 

thought. They write: “The Industrial Revolution convinced large numbers of logicians of the 

immense power of mechanical operations.”
87

 It was this machinery that filled the heads of 

logicians with dreams of similarly mechanized thought. The most faithful expression of this was 

the analytical engine of Charles Babbage. This impetus for bettering society, mentioned in the 

first chapter, melded with an analogue from the factory floors of the Industrial Revolution. After 

this chapter we will see a switch to continental Europe where logical research took a different 

form. So what did cause the new logic to arise? It was mentioned in the introduction that Boole 

himself states in The Mathematical Analysis of Logic that the quantifier debate between 

Hamilton and De Morgan was the impetus for writing that work. It is worth pointing out that De 

Morgan was intimately connected to this debate and also assisted the founding of mathematical 
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logic. It is not surprising then that Boole would have thought the debate important enough to 

mention in his 1847 work. But it doesn’t seem that this was a cause of the new logic. It is true 

that Boole was a mathematician who tackled logic. But that is also true of Johan Lambert. The 

cause for the rise of the new logic was three part. First, as mentioned above there was the new 

analog of machine floor. Second, there was Boole’s approach which because of his background 

was much more mathematical than his contemporaries. Third, in the case of both De Morgan and 

Boole there was incitation of the Hamilton-De Morgan debate. While I do not believe that the 

quantification of the predicate pointed in the direction of mathematical logic, I do think it spurred 

both men to develop sweeping systems of logic.  

Conclusion 

 Boole is the founder of mathematical logic on two counts. First, that he along with De 

Morgan had fully algebratized logics. Secondly, of these two, Boole’s system was engaged with 

much more than De Morgan’s. Boole can perhaps be given credit for what his system lacked. It 

was the shortcomings of Boole’s calculus that was the catalyst for the logicians that are discussed 

in the following chapters. Boole, nonetheless, frames the accomplishments of later logicians. 

This is because it is Boole with whom later logicians will have to engage. It is Boole in the logic 

strain and, as we will see in the next chapter, Bolzano in the set theoretical strain; who will frame 

the investigations in both these fields for the rest of the nineteenth century.    
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3: Bolzano and the Paradoxes of the Infinite 
 

Introduction 

 The Czech mathematician Bernard Bolzano is where this investigation will pick up the 

thread of concerns that led to set theory at what can best be considered its beginning. Bernard 

Bolzano will be taken as the beginning of the set theoretical strain which includes Dedekind and 

Cantor. These pages will justify taking Bolzano as the beginning of the set theory strain. Bolzano 

has been neglected in the historiography. I will show in later chapters that he was he was 

important to both Cantor and Dedekind. These pages will also argue that there was an early link 

between logic and set theory in the work of Bernard Bolzano (1781-1848). Specifically, this 

chapter will look at the paradoxes and outline central issues that were being dealt with. This 

chapter will also argue that these paradoxes and Bolzano’s solutions of them sets the discourse 

for the notion of infinity for the rest of the nineteenth century. Even the solutions that sank into 

obscurity will serve to show the single mindedness of Paradoxes that made it revolutionary.  

Bolzano was the first to treat infinity in the way that later set theorists treated it, as an 

object of study in its own right. The best place to begin this investigation is with the book 

Paradoxes of the Infinite, published four years after The Mathematical Analysis of Logic. 

Bolzano died in 1848 and it is probable that he had not read Boole’s work. Paradoxes of the 

Infinite was published posthumously through the effort of Bolzano’s friend Dr. Prihonsky in 

1851. The historian Ivor Gratten-Guiness argues that Bolzano made discoveries in analysis in the 
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period Gratten-Guiness calls “new analysis.” This was a period of rapid development in the field 

of analysis, this research mostly took place in Paris in the early nineteenth century. Although 

Bolzano was in Bohemia and research in the new analysis was mostly taking place in Paris, 

Gratten-Guiness argues that Bolzano’s ideas arrived onto the Paris scene through the 

mathematician Augustin-Louis Cauchy.
88

 In Paradoxes of the Infinite Bolzano cites the work of 

Cauchy and Joseph-Louis Lagrange, two of the giants in the history of analysis. What is 

important to draw from this is that this strain largely emerged from analysis. Bolzano was 

steeped in the world of analysis, and he personally made important discoveries in this field. 

Bolzano foresaw many of the concepts that set theory later developed. He foresaw problems that 

set theory tried to solve some forty years later, one being: how to tell if two infinite sets have the 

same number of members? These concerns revolved around the concept of infinity. In Paradoxes 

of the Infinite the concept of infinity was discussed in a way that prepared an environment for the 

developments to come. The question to be treated is: how was infinity treated in such an 

environment? 

Bolzano’s life 

 Bolzano lived a tumultuous life as a mathematician and a political and religious radical. 

His radicalism led to his dismissal from the University of Prague and to the relative obscurity of 

his work to later generations. His work was rediscovered later in the nineteenth century; of this 

more will be said in later chapters. So complete was this obscurity that De Morgan independently 

discovered one-to-one correspondence in the intervening years. It is worth giving a brief 
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overview of Bolzano’s dismissal since his absence from the cloisters of academia is the root 

cause of the long obscurity of his work, and its later discovery.  

 Bolzano took Catholic orders and occupied the chair of philosophy of religion at the 

University of Prague in 1805. Bolzano was removed from the chair in 1819. The dismissal was 

an outcome of comments Bolzano had made against war, social class, and rank while delivering 

church sermons. On the ecclesiastical level Bolzano was recognized as a Catholic in good 

standing throughout his life. But, the result of the dismissal was that Bolzano was never to hold 

any academic appointment. His dismissal was a matter of the Czech government, who had the 

power to remove him from academia. Bolzano split his remaining years between Prague, where 

he lived with his brother and the home of his benefactress outside of Prague.
89

 

Bolzano’s Work on Infinity 

Bolzano’s concern was with infinity. The definition of infinity Bolzano gives us is as 

follows. Infinite means that which cannot be counted, or what is equivalent, measured. When 

reading Bolzano it must be kept in mind that his terminology differs from that of the set theorists 

of the late nineteenth century. The term “countable” is one such example. “Countable” in 

Paradoxes means finite whereas later it would include the infinite set of cardinality 0א. That is, 

an infinite series is one that has no last term. Bolzano writes: “I propose the name infinite 

multitude for one so constituted that every single finite multitude represents only a part of it.”
90

 

An infinite series is not countable because it has no final member. As a result any number that 

could be counted to would comprise only part of infinity. Bolzano’s “countable” can be 

paraphrased as “countable in full.” When discussing an infinite set Bolzano writes: “Whence it 
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follows that the aggregate of all the above propositions enjoys a multiplicity surpassing every 

individual integer, and is therefore infinite.”
91

 Infinity then can be thought of as the multiplicity 

of which every finite multiplicity is part. Infinity can also be thought of as the multiplicity that is 

greater than every integer. Under Cantor this multiplicity will be referred to as omega. Bolzano 

comes closer to ordinals than this as will be discussed later. 

 Bolzano’s discussion of points mimicked the later work of the mathematicians below. 

One area in which Bolzano foresees this work is when he writes of points; “a simple point of 

time or space has no such thing as a limit, but rather is itself the limit of an interval of time or of 

line.”
92

 This is similar to what Dedekind would write about real numbers. This characteristic of 

points will come up again in the discussion below of the Dedekind cut and the properties of the 

number line. In the discussion of limit points Bolzano also comes close also to an idea that the 

mathematician Bernhard Riemann had. Both men were concerned with the relationship between 

infinity and endlessness. Bolzano writes:  

 No whit more satisfactory is the definition given by those who lean on the derivation 

 of the word and say: the infinite is that which has no end. If they are thinking in this 

 definition only of an end in time, only of cessation, then no other things could be 

 infinite but those subject to temporal flux, whereas we also ask of things not so subject, 

 like lines or abstract quantities, whether they be finite of infinite. But if they take the 

 word end in a wider sense, say as equivalent with limit as such,
93

  

 

Bolzano counts this restricted sense of “endless” as one of the erroneous definitions of infinity. A 

similar consideration was made by Riemann. The historian Morris Kline writes of Riemann: 

 One of his (Riemann) novel thoughts was that we must distinguish between 

 endlessness and infiniteness. For example, the equator of the Earth is endless but 

 finite. In view of this  distinction Riemann proposed an alternative to Euclid’s axiom 
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 on the infiniteness of the straight line, namely, the axiom that all lines are finite in 

 length but endless.
94

 

 

Infiniteness and endlessness would find its way into much of nineteenth century mathematics. 

Considering the above it is perhaps not surprising that Riemann had influence on set theory 

through his work with manifolds. In the first part of the Bolzano quote, infinity is defined as 

“that which has no end” contrary to the distinction that Riemann made. Bolzano adeptly shows 

that this kind of infinity will not serve the purposes of the mathematicians and that end must 

redefined as limit. He eventually shows that this definition is also lacking. What is important 

here, though, is that both thinkers are engaging with an opposition between limit and end. In both 

mathematicians we see an engagement with limit, end, and infinity. The influence of Paradoxes 

had great breadth, paralleling, as it did, considerations in geometry.  

 Later, Bolzano advanced the concept of infinity with holomerism. Bolzano’s definition of 

holomerism has within it part of the definition of infinity that Dedekind posited later. 

Holomerism, in Bolzano’s own words, states two rules such that for an infinite set and one of its 

subsets: 

 It is possible to couple each member of the first set with some member of the second 

 in such wise that, on the one hand, no member of either set fails to occur in one of 

 the couples; and on the other hand, not one of them occurs in two or more of the 

 couples;
95

  

  

This is Bolzano’s first rule, which lays out one-to-one correspondence. In his second rule he 

writes: 

 One of the two sets can comprise the other as a mere part of itself, in such wise that 

 the multiplicities to which they are reduced, when we regard all their members as 

 interchangeable individuals, can stand in the most varied relationships to one 

 another.
96
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Holomerism states that a one-to-one correspondence can be drawn between the members of the 

sets, and that one of the sets is only a part of the other. Bolzano gives the following example as 

an illustration of holomerism: 

 
  

Bolzano tells the reader to imagine the line above with three points a, b, and c on it, such that ac 

is longer than ab. Suppose that two more points x and y are described along the line such that the 

ratio ab:ac = ax:ay. Whenever the position of y changes the position of x must change in order to 

maintain the ration of ab:ac. Thus, for any arbitrary point at which y is located, x is then located 

at a point such that a pair is created, such that xy is a unique pair of points and neither x nor y are 

members of any other pair created as y moves about the line. To put this another way, there is a 

one-to-one correspondence between every possible position of y and the resulting position of x. 

The first of Bolzano’s rules has been fulfilled. One-to-one correspondence is the inheritance 

Bolzano bequeathed to later mathematicians. Dedekind’s and Cantor’s mathematics will turn on 

one-to-one correspondence. Bolzano then argued that ax was a part of ay since ay contained all 

the points ax+xy. Thus the second rule is also fulfilled. It is worth mentioning that this is an 

example in which Bolzano would say that ax and ay are different magnitudes of infinity and 

more will be said of this later. 

 It is worth discussing where Bolzano fell short of set theory. Donald Steele writes in his 

introduction to Paradoxes: 
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 In fact, as soon as we have said that Bolzano formulated holomerism more precisely 

 than hitherto, viewed it more universally, and made it a symptom of infinitude sets, 

 we have claimed as much as the Paradoxien warrant. Neither there nor in other  writings 

 does Bolzano exploit holomerism enough to be regarded as a precursor of Cantor in any 

 greater measure than that.
97

  

 

Steele argues that Bolzano was a forerunner of set theory only to a point. Holomerism and the 

one-to-one correspondence contained therein were not developed as far or as rigorously as set 

theorists would later. Specifically, Bolzano does not use one-to-one correspondence as criterion 

for two sets having the same number of members but only for detecting infinity. This is just what 

later mathematicians would use one-to-one correspondence for. One-to-one correspondence will 

become central to the work of Frege, Dedekind, and Cantor discussed below. Bolzano’s 

holomerism was very close to Dedekind’s later definition of infinity. 

  Bolzano also believed that calculations with infinity were possible. Bolzano tells us that 

these are justified because they are calculations with ratios not numbers. Bolzano writes: 

 A correctly conducted calculation with the infinite is not a numerical determination 

 of what is therein not numerically determinable (namely, not a numerical  determination 

 of the infinite multitude as such) but only aims at determining the ratio [or relationship 

 (5)] between one infinite and another;
98

 

  

Later Bolzano attacks the position that “When we pass to the whole infinite set of numbers, n 

simply becomes N0.”
99

 N0 cannot be considered the final number n in the set of natural numbers 

because there is no final term n that could be equivalent to N0. While he cannot give the number 

that belongs to N, he can give the ratio between the set of natural numbers and the set of even 

natural numbers as 1:2=Ne:N.
100

 N here is close to what Cantor developed with ordinals, which is 
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discussed below. Though not exactly since Bolzano’s N is cumulative, as seen in the series 

below.  Bolzano even goes so far as to write: 

 1
0
N0 + 2

0
N0 + 3

0
N0 + . . . = N0

2
  

 1
0
N0

2
 + 2

0
N0

2
 + 3

0
N0

2
 + . . . = N0

3  101 102
 

 

Bolzano derives the second equation by multiplying the first by N0. This process yields infinite 

degrees of infinity. Though less sophisticated than Cantor’s ordinals, the germ of what Cantor 

accomplished is contained here.   

 Bolzano prefigures Cantor by arguing that there are different magnitudes of infinity. 

However, Bolzano deviated from cantor when he wrote: “On the contrary, many of them are 

greater (or smaller) than some other in the sense that the one includes the other as a part of itself 

(or stands to the other in the relation of part to whole).”
103

 He also deviates from Cantor when he 

writes: 

What mathematician is there who, if he allows infinity of any kind, is not forced to 

concede that the length of a straight line bounded on one side but stretching to infinity on 

the other is infinitely great and nevertheless capable of being increased on the side 

hitherto limited?
104

 

 

This allows for the difference in magnitude between the set of real numbers and the set of natural 

numbers since the natural numbers are a part of the set of real numbers. However, it is not 

restrictive enough. For it also allows for the difference between the set of natural numbers and 

the set of even natural numbers. This can be seen in the following example that Bolzano gave: 

                                                 
101

 Suppose we take the number 3
2
. We can write this out as 3 x 3. We can further write this out as 3 + 3 + 3 = 9. If 

we next say 3 + 3 + 3 = 9 and want to know what 9
2
 is then we write (3x9) + (3x9) + (3x9) = 9

2
. This can then be 

written as 27 + 27 + 27 = 81 = 9
2
. If you wanted to know what 9

3
 is you could write (3x9

2
)+(3x9

2
)+( 3x9

2
)= 9

3
 or 

(3x81)+(3x81)+(3x81)= 9
3
. This is how these two series are generated. 
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Ray 1 begins at point a and travels to the right. Ray 2 begins at point b and also travels to the 

right. Bolzano says that ray 2 is longer than ray 1; however both lines are infinite. This is a 

conclusion that Cantor would reject. Bolzano also fails to give a rigorous definition of “part.” It 

is clear that what he meant was a concept like the term “proper subset” later used by Dedekind. It 

may justly be asked at this point if the first rule of holomerism should have prevented Bolzano 

from stating different degrees of infinity. One-to-one correspondence could be applied to N : Ne 

or to the points or measured feet of ray 2 and ray 1. As mentioned above Bolzano never meant 

the first rule of holomerism to be a justification for saying that two sets were of the same size. 

One-to-one correspondence is only used to tell if a set is infinite.     

 Bolzano states the nature of infinity. Next he set out to prove the existence of infinity. He 

does this by looking at assertions and assertions of assertions. For the purpose of this discussion, 

we will refer to these as recursive propositions. For example: 

 A 

 (A) is true  

 ((A) is true) is true 

  (((A) is true) is true) is true 

 etc. 

S R 

b a 

2 

1 
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These propositions are only a part of the set of all propositions. The totality of propositions can 

be placed in one-to-one correspondence with these propositions since they are themselves 

propositions, as illustrated below: 

 A ----------------------------------------- B 

 (A) is true --------------------------------- A 

 ((A) is true) is true ------------------------ If B then C 

 (((A) is true) is true) is true -------------- (A) is true 

 ((((A) is true) is true) is true) is true ----- B or A 

For every proposition one selects, a recursive proposition can be matched to it. The two rules of 

holomerism are therefore fulfilled, and the set of all propositions is shown to be infinite. Bolzano 

writes: 

 The aggregate of all these propositions, every one of which is related to its 

 predecessor by having the latter for its own subject, and the latter’s truth for its own 

 assertion, comprises a set of members (each member a proposition) which is greater 

 than any particular finite set. The reader does not need to be reminded of the 

 similarity borne by this series together with its principle of construction to the series 

 of numbers considered in S8.
105

  

 

Thus Bolzano proves the infinitude of all propositions. It is interesting to note that this proof 

assumes something like the sixth axiom in Peano’s Principles of Arithmetic, which concerns 

succession in natural numbers. This axiom will be discussed in detail in a later chapter.
106

 This is 

important because it suggests common thinking between the two strains of foundations, Peano 

belonging to the logic strain and Bolzano as the beginning of the set theoretical strain.  
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 Bolzano qualifies the above proof by saying that it concerns “non-actual members.”
107

 In 

a sense Bolzano admitted his own cheap trick and gives a more substantive proof of the existence 

of infinity. In Paradoxes of the Infinite Bolzano wanted to posit and solve the paradoxes of 

infinity. A few words should be said here on what a paradox is in mathematics. A paradox in this 

context is when the mathematician’s intuition comes into conflict with some new application of 

previously accepted mathematics. This occurs when accepted canon leads to absurdities. The 

first paradox Bolzano treated was the infinity of the natural numbers. Bolzano stated the paradox 

as follows: “If each number . . . is by definition a merely finite set, how can the set of all 

numbers be infinite?.”
108

 In other words, if any natural number n and every natural number that 

precedes n form a finite set then how can the set of all natural numbers be infinite? With 

whatever set we choose wouldn’t we have a finite number n of members? Bolzano’s solution to 

this paradox is to point out that in the set of all natural numbers there is no n that occupies the 

last place, as stated in his definition of infinity as not having a last member.
109

 

 Bolzano engages with the ancient conundrum known as Zeno’s paradox.
110

 This paradox 

is stated through the series 1 + ½ + ¼ + 1/8 + 1/16 . . .  this series continues on to an infinite 

number of terms. Each of these terms is a finite quantity like with the set of natural numbers. 

Therefore it seems that the sum that is described by this series should be infinite. On the other 

hand it seems that the series tends towards a limit of 2. Bolzano solves the paradox as follows: 
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 The paradox is usually told in the following way. The ancient Greek warrior Achilles is to race a tortoise.  

The rules of the race stipulate that the tortoise is to have a head start. Now, suppose the tortoise travels one foot  

per second and Achilles travels two feet per second. Also, suppose that the tortoise has a one second head start.  

When the tortoise reaches one foot Achilles will start running. When Achilles reaches one foot the tortoise will  

have traveled another half a foot. When Achilles travels half a foot the tortoise will have traveled a quarter of a  

foot. The paradox is that it seems as though Achilles will never catch the tortoise.   
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 The semblance of a paradox which some may see in it originates in forgetfulness of 

 the fact that the addends become smaller and smaller. Nobody can be surprised if a 

 sum of addends each of which halves its predecessor can never surpass the double of 

 the initial addend, since at however late a term in the series we halt, exactly so much 

 is wanting to make up that double, as the term in question has value.
111

  

 

Addends here are the terms in the series. The sum of the members of the set of natural numbers 

is infinite because the quantities become larger. Even the sum of the terms of the series 

1+1+1+1+1 . . . is infinite since the quantities do not change. In Zeno’s series the quantities 

become smaller at a certain rate.
112

 This is why its sum is finite. What Bolzano is pointing out is 

that no matter what term we take, the sum of the terms will be exactly that far from 2n1, that is 

twice the first term. This is exactly the value that the next term will be half of. So, if we take the 

first three terms of the above series the sum is 1¾ which is ¼ away from 2n1 which is 2. Thus, 

Bolzano solved the original paradox of infinity.  

 Bolzano considers what he calls the paradox of continuous extension. This deals with an 

apparent paradox in the idea of a continuum. Bolzano tells us that this paradox came from 

considerations of time. The example of time is particularly useful in this explanation because 

time can be thought of as a line. An analog can be seen in the solution of this paradox with the 

investigations of Richard Dedekind that are covered below. The paradox is given in two parts. 

The first part asks that if something is extended, how can it arise from parts that are not 

extended? That is, how can a line be one dimensional yet constructed completely out of 

dimensionless points, even if there are an infinity of them? Where does the other dimension 

come from? Bolzano meets this paradox by stating that the points of the number line do not have 

to be one dimensional in order for the line to be one dimensional. More generally, Bolzano states 
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that it is not necessary that characteristics of the whole must be found in its parts.  Bolzano uses 

the example of the automatons of his day: 

 An automaton has the property of almost deceptively mimicking the movements of a 

 living person, whereas its separate parts, its springs, its little wheels and the like, do 

 not possess any such property.
113

 

 

The parts of the automaton give rise to human-like mimicry without being human themselves. 

The second part of the paradox states another attack on the continuum. Bolzano states this attack 

as follows: “That every two instants or points or substances still stand at a certain distance apart 

and hence fail to constitute a continuum.”
114

 Bolzano tackles this part of the paradox by defining 

continuum in a precise way. Bolzano defines “continuum” in the following way: 

 we are forced to declare that a continuum is present when, and only when, we have 

 an aggregate of simple entities (instants or points or substances) so arranged that  each 

 individual member of the aggregate has, at each individual and sufficiently small distance 

 from itself, at least one other member of the aggregate for a neighbor.
115

 

 

To understand this definition and what it accomplishes, a definition of neighbor and 

neighborhood is necessary, the two terms would have been familiar from Bolzano’s work in 

analysis. A neighbor is a member of a set occupying a position within a vicinity of an arbitrary 

size around another member of the set. A neighborhood is this vicinity. For example:   
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c is the neighborhood around point a. b is the neighbor to a within the neighborhood c. Bolzano’s 

definition of continuum states that for any point a, a neighborhood c, no matter how small, can 

be described around point a such that there is a neighbor b within the neighborhood. This is what 

a continuum is for Bolzano. Before it was argued that in a so-called continuum any two points, 

no matter how close together they were, still had a distance between them, therefore there was no 

continuum. Bolzano argued that, in fact, in a continuum every point can have described around it 

an arbitrarily small neighborhood such a neighbor can be found to fall within it.
116

  

 Bolzano discussed a paradox that originated with Galileo. This paradox states that “the 

circumference of a circle is equal in magnitude to its center”
117

 That is, the area of a point at the 

center of a circle is equal to the area of the circumference of that circle. This, of course, is 

nonsense; neither a zero dimensional point nor a one dimensional circumference has any area at 

all. This paradox stems from a misunderstanding of infinitesimals.
118

 The paradox states that the 

length of line pn is the radius of a circle with an area equal to the area of a ring formed between 

two circles pm and pr. This is readily accepted by Bolzano. The smaller circle has the radius of 

pm and the larger the radius of pr.
119

 As the line pr moves toward the line ab the point m moves 

along the curve toward b and the point n moves along the diagonal toward a. Hence, as pr moves 

toward ab both areas become smaller. The paradox states that the circle pn shrinks to an 

infinitesimal area and the ring mr to an infinitesimal ring. The circle and the ring shrink down to 

a point and a circumference. Hence, the point p that pn has shrunk to and the circumference 

around p that mr has shrunk to are the same size. It is counterintuitive to think of a point at the 
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center of a circle and the circumference of that circle as having the same area; they do not have 

an area. This was Bolzano’s solution. He stated that pn disappears into p and that it cannot be 

said that p is the center of the circle any longer. mr disappears into a circumference around p and 

it no longer makes sense to talk about mr being a ring between pm and pr. Bolzano states the 

fallacy in two parts, the first which pertains to the radius of pn, as believing that: “When our 

attention is transferred from p to a and no such radius pn exists any longer, the point a still 

survives as the midpoint of the ultimate circle pn.”
120

 The second part pertains to the ring, he 

states: 

 

The ring left between with the smaller radius pm and that with the larger radius pr 

‘ultimately’ becomes the circumference of the previously greater circle, ‘ultimately’ 

meaning: when the two radii and hence the two circles have become equal.
121

 

 

Bolzano stated the following equation: “π.pn
2
=π.pr

2
-π.pm

2
.”

122
 For Bolzano, the equation shows 

that pn and the ring between pm and pr just do not exist, not that their areas are equal. Thus, 

Bolzano resolves the apparent paradox. The cause of the preceding paradox is the 

misunderstanding of the infinitesimal. It is helpful to delve into this misunderstanding. It is 

composed of this, that, when pr reaches ab the areas concerned are zero. This creates the illusion 

that these geometric entities still exist, that they have just such a measurement. This came about 

because as pr becomes an infinitesimal distance from ab the areas become infinitesimal. The 

errant mathematician takes this as license to say that since the equivalence works for 

infinitesimals it holds for zero. But that is a philosophical move not a mathematical move, and an 

errant move according to Bolzano.    

                                                 
120

 Bolzano, Paradoxes, 142. 
121

 Ibid. 
122

 Ibid.  



56 

 

      

 Bolzano also defends the idea of the infinitesimal against mathematicians who argued 

that the infinitesimal does not exist. Raymond Wilder quotes the Swiss mathematician Johan 

Bernouli as saying: “ A quantity, which is increased or decreased infinitely little, is neither 

increased nor decreased.”
123

  Bolzano states: “A number of mathematicians sought to avoid such 

contradictions by taking refuge in the declaration that infinitely small quantities are in reality 

mere zeros.”
124

 These mathematicians argue that an infinitesimal that was added or subtracted 

from a lower order infinitesimal, a finite quantity, or any infinite quantity; should be treated as 

zero. For example, 2 ± m = 2. m here is represents an infinitesimal quantity. Bolzano argues that 

if we create an irrational fraction such as M/N and we say of a rational number p/q that p/q < 

M/N < (p+1)/q then we may replace M with M ± m with no difference to the truth of this formula 

no matter what p or q may be. However, if M/N is rational then there is a rational number p/q 

such that M/N = p/q. In this case M/N forms a Dedekind cut, these cuts are discussed below. It is 

important to recognize the relevance of this particular paradox to Dedekind’s work. In this 

situation the mathematician can no longer replace M with M ± m and maintain the truth of the 

equation M/N = p/q. For if M/N = p/q then either (M ± m)/N < p/q or (M ± m)/N > p/q.
125

 Thus 

Bolzano gives a circumstance in which there is a very important difference between zero and 

infinitesimal.  

Bolzano’s Logic  

 Although this chapter in primarily concerned with Bolzano’s views on infinity there 

should be a brief mention of his work in logic. Most of Bolzano’s logical work is contained in 
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Wissenschaftslehre. Steele argues that Bolzano deemphasizes the importance of psychology in 

logic.
126

 In this, Bolzano agrees with Frege’s aim to remove psychology from logic which the 

latter states in the Begriffschrift. Steele mentions especially Bolzano’s concept of “satze an sich” 

contained in The Wissenschaftslehre.
127

 This term refers to an absolute proposition similar to 

Frege’s concept of the Begriffschrift, or “concept writing,” which will be described below. 

Paradoxes of the Infinite is the more relevant work to the present investigation. This chapter is 

concerned with Bolzano as a mathematician more than as a logician. Steele observes: “Apart 

from references by Hamilton and Venn to matters of smaller moment, the logicians took longer 

to discover Bolzano than did the mathematicians.”
128

 As a mathematician, Bolzano’s impact was 

probably greater since his ideas were discovered there earlier. Still there is something to be said 

here of Bolzano’s logical work. This work was applauded in due time as when Heinrich Scholz 

writes that: “With Frege, he (Bolzano) is one of the greatest two formal logicians in the German 

literature of the nineteenth century.”
129

 The lack of attention to his logic has been remedied and 

recently his work has come out in English translation. Bolzano forms a link between the set 

theory strain of foundations and the mathematical logic strain. His books Paradoxes of the 

Infinite and Wissenschaftslehre are his great contributions to the logical and set theoretical. The 

division between logic and set theory is not absolute in these two books. Bolzano calls, for 

example, for a quasi-axiomatic treatment of infinity in Wissenschaftslehre. He calls this the 

second rule for the conveyance of scientific knowledge.
130

 Bolzano formulated these rules for the 

guidance of science. This treatment is similar to that of Giuseppe Peano discussed below. In this 
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we see the influence of Leibniz who also stated the importance of axioms. Bolzano was heavily 

influenced by this giant of seventeenth century logic. A good chunk of Paradoxes is devoted to 

metaphysics, a field that at the time would have been still dominated by Leibniz’s Monadology 

and Discourse on Metaphysics. 

Conclusion 

 Bolzano’s book Paradoxes of the Infinite forms the beginning of what became set theory. 

Bolzano also forms a link between logic and set theory in Paradoxes and Wissenschaftslehre. In 

Paradoxes, he sets out the issues that later set theorists would deal with. The paradoxes that 

Bolzano attempted to solve called for new methods which opened avenues of research for future 

mathematicians. But even more than this, Paradoxes represented a new way to think about 

infinity that would later become its own field in mathematics. It was the rediscovery of Bolzano 

by mathematicians at the University of Berlin that would give Bolzano’s ideas new life among 

the first generation of set theorists.   
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4: The Youth of Mathematics 
 

 

 Historians of logic usually trace back the official birth of the contemporary 

 mathematical form of logic to the first edition of George Boole’s The Mathematical 

 Analysis of Logic of 1847. It has become common, however, to speak of a second 

 birth, due to the publication of Gottlob Frege’s Begriffschrift in 1879.  

        -Massimo Mugnai
131

 

  

 Logic is the youth of mathematics and mathematics is the manhood of logic. 

        -Bertrand Russell
132

  

Introduction 

  

 Gottlob Frege will be central to the remainder of this study. He ushered in a second 

founding of mathematical logic. The historian Akihiro Kanamori writes that Frege was the 

“greatest philosopher of logic since Aristotle.”
133

 Frege’s Begriffschrift, by translation, is a 

conceptual notation and took the mathematical program in logic further. Frege is also an early 

founder of logicism which was an influential philosophy to the mathematicians who followed. 

Frege is the first of two logicists discussed, the other will be Richard Dedekind. I will also 

discuss Giuseppe Peano who, while he was influential to formalism, can be counted as in the 

same school as Frege and Dedekind. Frege set the program for logicism. He did this by 

criticizing and then amending prevailing views of number and arithmetic. One such example was 

Frege’s attack on psychologism. I will argue that this is one of the big moves in the history of 

logic, and show how Frege attacked some of the figures already discussed. Contemporary 
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historians, such as Massimo Mugnai, consider Frege to be just as instrumental in the creation of 

mathematical logic as George Boole was. This is a view I agree with and it is in large part 

because of Frege’s attack on psychologism. No one did more in the nineteenth century than 

Gottlob Frege to found logicism. Our discussion of Frege will focus on two works, Begriffschrift 

(1879) and The Foundations of Arithmetic (1884). Frege was born in 1848, the very year that 

continental Europe exploded in revolution.
134

 He was raised in the Lutheran faith common to 

German children of the time. He attended the University of Jena and the University of Gottingen, 

where he received his doctorate in 1873. He then returned to the University of Jena where he 

became a lecturer. He would spend the rest of his career at Jena.   

  Logic Moves to the Continent  

Frege and the mathematicians he collaborated with were all continental, and for the most 

part German. To determine why this shift occurred the historian must reach outside of the world 

of mathematics. I have mentioned that the center of mathematics in general had moved from 

France to Germany. Logic, in particular, had moved from Britain to Germany. One of these 

mathematicians, Peano, was not German. We may use this to guess at a cause for the shift in 

dominance to Germany. Both Germany and Italy had become nations and thus completed the 

process begun by the failed revolutions of 1848. While there was still uncertainty, the advantage 

of domestic tranquility mentioned by Bruun earlier was no longer unique to Britain. Germany 

had lagged behind Britain in the Industrial Revolution and so also, according to Michael 

Shenefelt and Heidi White, in the analogy that was available to the logicians of Britain. The 

historian W.O. Henderson states that this is because Prussia, the largest kingdom of Germany 
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before unification, lacked money and fought wars early in the nineteenth century.
135

 Geoffrey 

Bruun writes of Germany’s ascension: “Great Britain had been the ‘workshop of the world’ for a 

hundred years, but by 1900 Germany and the United States had cut down the British lead.”
136

 

Bruun goes on to write of the export of machinery (an economic indicator): “By 1880 the order 

of precedence was Great Britain, Germany, the United States.”
137

 Germany had overcome its 

economic deficiencies. It had become an economic power in the world. The industrial analogy 

that had made Britain so dominant in the field of logic had come to Germany. This is just what 

we see. The second half of this narrative is dominated by Germany. Shenefelt and White’s theory 

seems to be correct. If we look at the time table logic does seem to have followed the Industrial 

Revolution.  

The Begriffschrift 

The Begriffschrift contains Frege’s logical system. Frege meant his notation to be a 

language for science. One can see in it many examples from science when Frege translates his 

notation. Frege advises the reader: “When a problem appears to be unsolvable in its full 

generality, one should temporarily restrict it.”
138

 Frege’s notation was just one such restriction for 

use by science and mathematics. Frege did not believe that his notation was a ratiocination. 

However, he did believe that it could lead to one in the future. Later, in 1882, Frege would write 

of his program in logic that: 

 My intention was not to represent an abstract logic in formulas, but to express a content 

 through written signs in a more precise and clear way than it is possible to do through 
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 words. In fact, what I wanted to create was not a mere calculus ratiocinator but a lingua 

 characterica in Leibniz’s sense.
139

 

 

In the field of logic Frege attempted to provide an improvement upon how concepts were 

communicated. Frege wanted a way to speak precisely in science, and in the Begriffschrift many 

of his examples are from science. He was not interested, as Boole was, in an algebra of logic. 

Frege wanted a more fundamental and articulable language for science. Frege compares his logic 

to a microscope: 

 The microscope, on the other hand, is perfectly suited to precisely such goals, but 

 that is just why it is useless for all others. This ideography, likewise, is a device invented 

 for certain scientific purposes, and one must not condemn it because it is  not suited to 

 others.
140

 

 

With this new language Frege felt he could have the precision necessary to begin constructing a 

foundation for mathematics and thus science. The difference lay in this. When Boole writes ab=a 

this imparts information. However, it is not very useful information for science. Suppose the 

mathematician states “for any number n > 2, if it is prime, then n+1 is a multiple of two,” 

referring to this as “the class of primes, is contained in the class of numbers that if you add 1 you 

will have multiple of two” is woefully cumbersome. There is a feeling that what the 

mathematician wants to talk about is numbers, not classes.    

 Frege replaces logic’s subject/predicate distinction with the argument and the function. 

Frege gives the following example: 

 A distinction between subject and predicate does not occur in my way of representing  a 

 judgment. In order to justify this I remark that the contents of two judgments may differ 

 in two ways: either the consequences derivable from the first, when it is combined with 

 certain other judgments, always follow also from the second, when it is combined with 
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 these same judgments, (and conversely,) or this is not the case. The two propositions 

 “The Greeks defeated the Persians at Plataea” and “The Persians were defeated by the 

 Greeks at Plataea” differ in the first way.
141

 

 

For Frege two propositions may differ so that either the other is deduced from the first or not. 

The subject switches between the Greeks and Persians. These two propositions differ in the first 

way, and each is derivable from the other. And so, for Frege, they differ in an uninteresting way 

and in symbolization they are just equivalent. So, subject and predicate are irrelevant in 

symbolization. This is an important point of departure from Boole’s notation. As we recall from 

the quantifier debate, the subject and predicate distinction had hitherto been of great importance 

to logicians. Boole symbolized propositions about classes, whereas Frege symbolized concepts. 

Concepts here should not be taken as mental objects; concepts are from outside the human mind. 

In particularly, Frege symbolized the content a proposition about classes had. What can be said in 

Frege’s notation is said of individuals. Frege calls his system a Characteristica Lingua in the 

fashion of Leibniz. It is worth delving into what this means. N.I. Styazkhin writes of the 

Characteristica Lingua: 

 Here Leibniz developed one of his favorite ideas: “an alphabet of human thought that 

 makes it possible to deductively derive new ideas by means of definite rules for 

 combining symbols.”  Here the logical idea of pasigraphy is clearly distinguished 

 from the linguistic idea of creating a “universal language.”
142

 

 

The important point here is the ability to “deductively derive new ideas by means of definite 

rules for combining symbols.” Logic then is not a clarification of ideas in mathematics; rather, 

the Begriffschrift is a generating engine of scientific discoveries. Frege begins the Begriffschrift 

by outlining the most fundamental part of his notation. Frege introduces two symbols: 
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The top symbol denotes the taking of a formula “paraphrastically,” in Frege’s words. When this 

symbol precedes a formula it is understood that we are not actually asserting anything. In the 

Begriffschrift this symbol is rarely used. Frege writes of this symbol that: 

 We must be able to express a thought without affirming it is true. If we want to 

 characterize a thought as false, we must first express it without affirming it, then  negate 

 it, and affirm as true the thought thus obtained.
143

 

 

This symbol then gives us an environment in which we can prepare statements; for example the 

negation of which will be asserted. The symbol on the bottom has appended to it the vertical 

“judgment” stroke. When this precedes a formula, we understand that the formula is being 

asserted. With this stroke the formula gains a truth-content and we may begin to speak 

meaningfully about what that content entails. Frege gives us the example that the assertion that 

opposite magnetic poles attract can be taken “paraphrastically” as, opposite magnetic poles 

attracting.
144

 

 Frege introduced new ways of symbolizing negation. This was closer to the modern 

conception of negation in that it did not refer to the complement of a class, as it does in Boole’s 

system. Frege’s system is not an algebra of classes and so in negation, what is asserted is the 

proposition negated with no recourse to classes. Frege also atomized negation. Not-a is then not 

a single entity, but rather it is an entity negated. Negation is separated from what it negates in a 

                                                 
143

 Frege, “Begriffschrift”, 11. 
144

 Ibid. 



65 

 

      

way that is impossible when, for instance, Boole writes (1-a). There is a good reason for Frege to 

want a paraphrastic environment available to him. In Frege’s negation we have to be able to say 

that if a thing is negated, then that thing itself can be asserted. The paraphrastic environment is a 

staging ground that allows us to do this.   

 The logical operations Frege uses are implication and negation. All the traditional copulas 

are expressible in his system. Frege addresses both forms of disjunction. He writes: “Of the two 

ways in which the expression “A or B” is used, the first, which does not exclude the coexistence 

of A and B, is the more important, and we shall use the word “or” in this sense.”
145

 Where Boole 

would write A + B Frege would write if not-A then B, this expresses something deep and entirely 

novel about disjunction. These situations are equivalent. Frege’s disjunction is inclusive, though 

the question of inclusive or exclusive disjunction loses relevance in Frege’s notation. Frege 

handles disjunction in his notation as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And conjunction: 
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Frege handles conjunction in the above manner. One need only use a truth table to see that this is 

equivalent to “A and B.” It would be useful to go ahead and here give a further explication of 

Frege’s system. In the above illustration we first notice that the judgment stroke is present. There 

is a short downward mark to the right of the judgment stroke; this is the negation mark. The 

implication begins with the lower letter B as the antecedent. The top letter A is the consequent. 

Hence the above notation reads, it is not the case that if B then not A. This is logically equivalent 

to A and B. 

 As mentioned above. Frege allows for the handling of the universal quantifier in the 

following way.  

 

 

 

 

 

Frege states that an a placed in a “concavity,” as above represents a generalization. The above 

notation means for all a Xa.  This allows Frege to symbolize the logic square. He represents A as:

  

A 

B 

a X(a) 
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He represents E as: 

 

 

 

 

 

 

He represents I as: 

 

 

 

 

 

He represents O as: 

 

 

a P(a) 

X(a) 

a P(a) 

X(a) 
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The following situation is translated as the familiar axiom “if A then, if B then A”: 

 

 

 

 

  

 

 

 

 

 

It is worth noting that the notation above could be translated as: it is not the case that, A and not, 

if b then A.
146

 This is an equivalence between implication and conjunction.
147

 Occasionally Frege 

will write a proposition of the form: 
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 In modern notation: ~ (A ˄ ~ (B→A)). 
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 This equivalence is derived by double negation. 

a P(a) 

X(a) 
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B 
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Here, the bottom A and B form an application which in turn implies A. In modern notation, this 

proposition would be: (A → B) → A.
148

  

 Frege has a discussion of what a function is. Frege asks the question: in the proposition 

“The Greeks defeated the Persians at Plataea” is “defeating the Persians” the function, or is 

“being defeated by the Greeks” the function? Frege’s answer is that it depends whether we take 

Persians or Greeks to be the argument, the replaceable part of the proposition. In this, the 

logician is at liberty. Frege writes: 

 The situation is the same for the proposition that Cato killed Cato. If we here think of 

 “Cato” as replaceable at its first occurrence, “to kill Cato” is the function; if we think 

 of “Cato” as replaceable at its second occurrence, “to be killed by Cato” is the 

 function; if finally, we think of “Cato” as replaceable at both occurrences, “to kill 

 oneself” is the function.
149
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Frege can express all three of these situations as: f(a), f ’(b), f’’(a, b), and even f’’’(b, a). In these 

cases, the function changes with the arguments and their order. In general, Frege will use two 

arguments in a function as he does when discussing sequences. In the Begriffschrift, Frege 

attempts an explication and symbolization of sequences. Frege begins with the following 

equivalence:
150151

 

 

 

 

 

 

The first equivalence states that if all d have the property F; then, if for all a, a is the output of 

the function f performed on d; then all a have the property F. This can be shortened to the 

proposition, “the property F is hereditary in the f sequence.” The natural numbers give us a good 

example of what Frege is up to here. Suppose we define F as the property of being a natural 

number. Now suppose d has property F, and suppose that for any a, a is the result of some 

function f on d. Let us take this function as f(d, a), as d+2=a. If this is true then a has the 

property of being a natural number. Therefore, the property of being a natural number is 

hereditary in the sequence formed by adding two to each natural number. This is because the 

output is also a natural number. It is important to remember that Frege is only setting a 

convention for symbolizing. He is not asserting anything but that:
152
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Will from now on be symbolized as this:
153

 

 

 

 

 

 

Frege states a second equivalence:
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Frege writes of this equivalence: 

If from the two propositions that every result of an application of the procedure f to x has 

the property F and that property F is hereditary in the f-sequence, it can be inferred, 

whatever F may be, that y has property F, then I say: “y follows x in the f-sequence”, or 

“x precedes y in the f-sequence.”
155

    

 

It would be best to take this very tricky argument in three steps: 

 

 1. F is hereditary in the f-sequence. 

 

 2. If a is the result of f performed on x then a has property F.    

 

 3. If 1 and 2 force y to have the property F, it can only be because y follows x in the f-

 sequence. This is because if y appeared before x in the f-sequence then 1 and 2 would 

 not imply that y had F. they would have just nothing to say about y. It is that they do 

 imply, for this relationship to exist between 1 and 2, and y having the property F, y 

 must follow x. 

 

Let us look at an example to parse out what Frege is saying here. Suppose F is the property of 

being an even number. Suppose f is the function 2n. Suppose x = 5. The f-sequence is the 

sequence of even numbers and it is obvious that F is hereditary in it. Suppose a is the outcome of 

performing f on x, so a = 10. If y is some unknown quantity such that we do know that it is even, 

that it has property F, then we can only know that by knowing that y follows x in the f-sequence. 

Frege’s Philosophy of Mathematics 

In the Begriffschrift Frege was not concerned with representing language as a part of  

mathematics. One can hardly look at the equivalencies just mentioned and say that they are 

mimicking human language. They seem to be grasping at a deeper conceptual truth. Nor was he 

concerned with the syllogism. There is nary a mention of the syllogism in the Begriffschrift. 

Frege also railed against the psychologism in the logic of his day. Boole’s 1854 opus was titled 

Laws of Thought. We should take a moment here to define exactly what we are to mean by 
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psychologism. Psychologism is the view that logic comes from the mind and not from the world, 

that it is a description of correct mental function and nothing more. This view tends to emphasize 

language because in this view language and logic come from the same place. Much of the logic 

in the first chapter will be criticized by Frege as psychologistic. Frege’s criticism of this logic is 

one of the big moves in the history of logic. The historian Nicla Vassallo argues that if Boole is 

psychologistic then so was Frege. She argues that, on the subject of where these laws existed, 

both logicians gave the same answer.
156

 Frege states that all thought is essentially the same. 

Thus, there must be a set of rules for all thought. I think that first, Boole’s system is more of an 

attempt to correct human thinking than Frege’s, because of historical currents I have already 

mentioned. Boole’s system is prescriptive. Second, as mentioned, Frege means his notation to be 

a Lingua Characteristica, and as N.I. Styazkhin tells us, this means logic must not just be 

language in mathematical form. For Frege the project was to generate new scientific knowledge 

by new combinations of symbols. Suppose we know that two chemicals mixed together in water 

form an alkali solution; suppose further that we know that if a solution is alkali then it conducts 

electricity. Then, once we have proven that the two chemicals mixed together form an alkali 

solution then we can surmise that mixing the two chemicals together forms a solution which 

conducts electricity. This is really just the transitive property. Of course scientists do this sort of 

thing all the time. However, if the chain became longer by several links the scientist would likely 

feel nervousness at not testing the links with experiment. Frege, and we will see that to a lesser 

extent Peano, hoped science could reason to such a long chain. The fact is Frege refers to 

something called psychology in logic, and Frege looks very negatively upon it. Boole on the 
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other hand is largely silent on all of this; there is no talk of generating new theories in science. 

Vassalo goes on to quote Frege: 

 Neither logic nor mathematics has the task of investigating minds and contents of 

 consciousness owned by individual men. Their task could perhaps be represented 

 rather as the investigation of  mind; of the mind, not of minds.
157

 

 

What Frege wanted to symbolize was concepts behind arguments. For example, while Boole was 

happy enough to symbolize “all a are b” as “ab=a” Frege went a step further and wrote “for all 

things, if it is a then it is b.” Frege’s logic was propositional. What is lurking behind “all a are b” 

is just that “if something is a then it is b.” This was the birth of mathematical logic, a birth that 

was begun by Boole.  

 The philosopher Dale Jacquette writes of Frege’s Platonism: 

 Frege adopts a Platonic theory of Gedanken or propositions. The concept is that of 

 abstract meanings of concrete sentences. It is similar to and possibly derived from 

 Bernard Bolzano’s doctrine of Satze an Sich (sentences in themselves) as the abstract 

 meanings of sentences in his  1837 Wissenschaftslehre.
158

 

 

Jacquette raises the possible influence from Bolzano on Frege. Satze an Sich is much what Frege 

has in mind when he takes sentences as the fundamental building blocks of logic and does not 

ascribe meaning to individual words. He writes in The Foundations of Arithmetic three 

principles:
159

 

 First- The psychological is to be sharply separated from the logical, the subjective 

 from the objective; 

 Second- The meaning of a word must be inquired after in propositional context, not 

 in isolation; 

 Third- The distinction between concept and object is to be kept in sight. 

 

The question may arise: Why not take the second principle too far? If the word cannot be taken 

in isolation, what makes Frege believe that the proposition can be taken in isolation? The answer 
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to this impacts analytic philosophy to this day. That is, propositions are atomic. The proposition, 

or sentence, is not merely a grammatical part, like a paragraph. Rather it is the grammatical 

animal that inhabits logic. The proposition holds a preferred place in logic. 

 Vassalo argues that even if we take psychologism in Boole to be ratiocination, that is 

normative logic, psychologism still applies to Boole and Frege equally. She points out that the 

subtitle of the Begriffschrift was “a formal language, modeled upon that of arithmetic, for pure 

thought.” She describes three positions on what logic is about. First is the view that logic 

describes thought. This is a view that she says neither man held. Second is the view that logic is 

the prescription for thought. This is the view that both men were likely to have. Finally is the 

view that logic just has nothing to do with thought. The operative word in the sub-title of the 

Begriffschrift is “pure.” “Pure” thought is what is common to thought. Remember that Frege said 

all thought was essentially the same, its concepts are what appear to it. The different views of 

logic are not as stark as the three positions suggest. Rather Frege was, if nothing else, more 

vocally anti-psychologistic than Boole. But I also believe that even if Boole didn’t recognize it, 

he was beginning an anti-psychologistic turn in logic. Both Boole and Frege were leaving behind 

the more linguistic and psychological logic of previous decades. This puts them somewhere 

between Vassalo’s second and third categories with Frege closer to the third and far more 

cognizant that there were categories. 

 For Frege, the Begriffschrift was a tool for finding the foundations of arithmetic. Of the 

importance of arithmetic considerations to his study of logic, Frege writes: “arithmetic was the 

point of departure for the train of thought that led me to my ideography.”
160

 What was needed 

after the Begriffschrift was a philosophical treatment of the relationship between logic and 
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arithmetic. The Foundations of Arithmetic was published in 1884 and outlines Frege’s 

understanding of this relationship. Frege shared this interest with Richard Dedekind and 

Giuseppe Peano. Frege criticizes previous logicians like Boole when he writes: “These 

deviations from what is traditional find their justification in the fact that logic has hitherto always 

followed ordinary language and grammar too closely.”
161

 In this passage Frege tells us that his 

ideography may seem strange, but only because he has thrown off the yoke of grammar. Frege 

also vehemently attacks the psychological tradition in logic. Jacquette writes: 

 He[Frege] rejects and polemicizes vehemently against psychologism in logic and 

 semantics, and his objections have inspired generations of extensionalistically-minded 

 logicians and meaning theorists also to avoid psychological, phenomenological, or 

 generally intentional factors in understanding the nature of meaning.
162

 

 

The traditional historiography is that Frege marks the first instance of strong anti-psychological 

feelings in logic. However, as we have seen, Frege’s view of logic is complicated and perhaps 

not all that different from Boole’s. 

 Frege provides a criticism of psychologism in logic, but also a deep criticism of Boole’s 

program. He writes: 

 

Thought is in essentials everywhere the same: there is no question as to whether for 

different objects there are different kinds of laws of thought. The differences consist only 

in the greater or less purity and independence of psychological influences, and on 

external aids to thought, such as language, number signs, and the like, than, say, on the 

fineness of the structures of concepts;
163

  

 

Frege accepted “different kinds of laws of thought.” But he said that there was only one 

fundamental logic. Boole’s calculus was just another calculus, it was not fundamental. To chase a 

logical notation is only to change the external aid. Boole would agree to this as when he believed 
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that his algebra was a kind of mathematics, not a foundation for mathematics. But Frege went 

further. Boole must have thought he was doing something fundamentally novel when he 

developed an algebra of classes. That thought is everywhere the same is the impetus for 

removing psychology, and taking up the standard of logicism. Thought in its essentials is 

everywhere the same because it is fundamentally the recognition of concepts external to it. Our 

concepts are the logical way of dividing up the world, not quirks of language or thought. After 

all, what Frege developed was a Begriffschrift, a concept writing.    

The Foundations of Arithmetic 

 Frege’s second great work was The Foundations of Arithmetic. Here he develops 

logicism, which was so influential to the remaining figures this thesis will discuss. Frege engages 

with previous mathematicians in The Foundations of Arithmetic and we will discuss two of these 

engagements. First, Frege engages with the eighteenth century German philosopher Immanuel 

Kant. Kant’s position is known as intuitionism. In the chapter on Cantor, we will see Leopold 

Kronecker hold a similar view. Kant’s views will be covered later. Frege criticizes Kant’s 

position when he says: 

 Do we have an intuition of 135664 fingers or points at all? If we had, and if we had 

 one of 37863 fingers and one of 173527 fingers, then the correctness of our equation 

 (135664 + 37863 = 173527), if it were unprovable, would need to be immediately 

 obvious, at least for fingers; but this is not the case.
164

 

 

Frege argues that an equation like 135664 + 37863 = 173527, cannot be known by any intuition. 

It can only be known by a proof. We cannot picture in our minds what 135664 fingers look like. 

Kant may argue that intuition applies to small numbers only. Frege points out that the distinction 

between small and large numbers is arbitrary. Frege discusses the definition of number given by 
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John Stuart Mill, who we saw in the first chapter. Mill wants to say that our concept of number is 

at heart empirical. Frege writes of Mill’s view: “How excellent, indeed, then, that not everything 

in the world is riveted and nailed down; for then we could not undertake this separation, and 2+1 

would not be 3!”
165

 For Mill the difference between four and five is the difference between four 

objects in the world and five objects in the world and just that. Frege derisively called this 

“gingerbread or pebble arithmetic”
166

. Frege points out that what we do with numbers is hold 

them in our mind regardless of what the circumstances are in the external world. Mill supposes 

number to be an adjective like “red” or “horse-shoe shaped.” This is the view Frege attacks. He 

points out that it is wrong to talk about a number applying differently as things are gathered in 

one spot or dispersed. Frege writes: “Are a thousand grains of wheat, when once they have been 

sown, no longer a thousand grains of wheat?”
167

 He also writes: “One pair of boots can be the 

same visible and tangible appearance as two boots.”
168

 Frege believes that number must be 

separated from the world. We must be able to count thoughts and eggs. So number cannot simply 

be an adjective, as Mill believes. His view can be better understood in the following way. In 

recent years popular physics books have been written which postulate the existence of 

fundamental physical values in the universe such that if they were different this universe would 

be a very different place, and perhaps not habitable.
169

 For Mill numbers are founded in such a 

way. 2 + 2 = 4 is true in this universe. If it were not, the universe would be very different. Frege’s 

attack on Mill probably stemmed from the fact that its empirical flavor meant that logicism 
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would get us nowhere in understanding number. Logicism, however far it might get us, would 

become a dead end in the world.  

 In The Foundations of Arithmetic Frege picked up on one-to-one correspondence. This 

concept leaves the set theory strain where it began with Bolzano and enters the logic strain. 

Frege would use one-to-one correspondence in a logical and philosophical context. Frege uses 

one-to-one correspondence in the definition of equinumerosity. Two concepts are equinumerous 

if a mutual univocal correspondence (MUC) can be drawn between them. This idea needs to be 

fleshed out a little. The concept of two socks is different from the concept of one pair of socks. 

The difference is by definition and so logical. The concept of five oranges is not equinumerous 

with the concept of ten socks. However, if we have the concept of five pairs of socks then there 

is a mutual univocal correlation between socks and oranges, so then they are equinumerous. This 

is in contrast with Mill’s view. For Frege, a heap of ten pairs of socks is different from a heap of 

twenty socks; for Mill they are the same. MUC divides concepts into groups that Frege asserts 

defines numbers. The number two is the set of all couples. The requirement for a concept’s 

admission into this set is MUC with a couple. But Frege does not have the numbers yet. He must 

first, starting with zero, give us numbers for which we can say all concepts they belong to have 

MUC.  The first number Frege builds is 0. He builds this by pointing out that “0” belongs to the 

concept “identical to ‘0’, and not identical to ‘0’” for which no number falls under it. Frege 

writes: 

 It must now be permissible to prove, by means of the previous suppositions, that  every 

 concept under which nothing falls, and only with such a one, from which it follows that 0 

 is the number that belongs to such a concept, and that no object falls under a concept if 

 the number that belongs to this is 0.
170
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Frege uses this sort of argument to construct the successor of 0.
171

 A very similar method is 

employed by Frege in his discussion of infinity. He writes: 

 The finite stand opposed to the infinite numbers. The number that belongs to the  concept 

 ‘finite  number’ is an infinite one. We designate it, say, by ∞
1
! If it were finite, then it 

 could not follow after itself in the natural number series. One can, however, show 

 that ∞
1
 does that. In the so defined infinite number ∞

1
 there occurs nothing that is in any 

 way mysterious or marvelous. ‘The number that belongs to the concept F is ∞
1
’ now 

 means nothing more and nothing less than: there exists a relation that mutually univocally 

 [one-to-one] correlates the objects falling under the concept F with the finite numbers.
172

 

 

In the above quote we see again the power of the method which Frege applied in constructing 

“0.” Frege gets from the finite to the infinite by saying that the finite numbers fall under the 

concept “finite number”, the number that belongs to this concept is an infinite number. Frege’s 

influence was great in the work of Richard Dedekind and Georg Cantor, who will be discussed in 

later chapters. On display here is the power of Frege’s style of argument. The distinction between 

“falling under” and “belonging to” along with MUC allows Frege to construct not only finite 

numbers but also infinity.   

 The logicism that Frege helped establish can be seen as a reconceptualization of 

Immanuel Kant’s synthetic a priori into the analytic a priori. This means removing psychology 

from mathematics. The synthetic a priori refers to truths that are known before any particular 

sense data, but are synthesized out of whole cloth in the mind. The analytic a priori are truths 

that are known before any sense data but are true by logical definition; for example: All mothers 

are women. Kant placed mathematics in the synthetic a priori. This meant injecting psychology 

into mathematics. Kant did this by dividing all of math into two mental intuitions, the intuition of 

space, and the intuition of time.  Space gives rise to geometry, and time gives rise to arithmetic. 
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Moving mathematics into the analytic a priori means that Frege will make the propositions of 

math akin to: all mothers are women. That is, a proposition of mathematics will be true or false 

depending on its congruence with the laws of logic.  Doing this we now have to be able to 

analyze mathematical propositions and this means logic. The historian Jose Ferreiros writes: 

 The traditional conception of axioms regarded them as true propositions that do not 

 admit of a proof. To the influential Kantian epistemology, axioms were “synthetic a 

 priori principles, insofar as they are immediately true” (Kant 1787, 760). Since logic 

 was a purely analytical science, in which no synthetic principle plays a role, the use 

 of axioms was radically foreign to it. This Kantian conception can still be found in 

 the work of the German mathematical logicians Schroder and Frege. It was for that 

 reason that Frege did not talk about arithmetical “axioms”, but about the “fundamental 

 laws” of arithmetic (Frege 1893/1903). Similarly, Dedekind seems to have thought that 

 the logicist program demanded the development of arithmetic in a rigorously deductive 

 way, without any recourse to axioms.
173

 

 

It is important to note that “axiom” is not to be imagined in the formalist sense. Axioms are not 

chosen they are discovered. They are “true propositions that do not admit of a proof” as Leibniz 

says. This point will be even more important for Giuseppe Peano. Ferreiros is correct here. 

Despite his attack, Frege was living in a world Kant created. Although Frege was housing 

mathematics in different neighborhood he was still housing it in a Kantian town.  

 The historian Massimo Mugnai characterizes Frege’s concerns with logicism when he 

writes: “Frege . . . considers mathematics as based on logic and constructs a new logical theory 

to express mathematical truths and to guarantee a perfect control of mathematical proofs.”
174

 

Frege made logic the foundation for mathematics. The system in the Begriffschrift was this 

foundation; it was to be a language for science and mathematics because its subject matter was 

the same. This would work because logic was about concepts external to the mind similarly to 
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the way that science was. Frege was a powerful ally to set theory because in his philosophy the 

set is what is fundamental to number. Set theory needed a fundamental account of the natural 

numbers in order to grapple with the natural number series. Frege, Dedekind, and Peano were 

forerunners to logicism. The historian of mathematics Howard Eves writes: 

 We have seen how these foundations were established in the real number system and 

 then how they were pushed back from the real number system to the natural number 

 system, and thence into set theory. Since the theory of classes is an essential part of 

 logic, the idea of reducing mathematics to logic certainly suggests itself.
175

 

 

Here the algebra of classes we saw with Boole, and will see with Peano, leads to a natural analog 

with sets. Mathematical logic lent itself to being a foundation for mathematics. It is not an 

accident that Frege would not only compose a foundation for arithmetic that would have a great 

influence on set theory, but he also wrote one of the most influential systems of mathematical 

logic. 

Conclusion 

 The Begriffschrift had a great influence on both the set theory and the logic strains. Frege 

developed a notation in the Begriffschrift for sequences and the order of its members. But what 

this notation accomplished was that it laid a conceptual foundation for speaking about the 

formation of a sequence and its order. His concept of inheritance in a sequence, as we will see, 

was mimicked by Richard Dedekind. Frege also had an atomized negation that allowed it to be 

applied to or stripped from an argument with no damage to the argument. Today the 

Begriffschrift is considered a foundational text in mathematical logic; this chapter has also taken 

this view. Frege was also a founding logicist. The Foundations of Arithmetic is where Frege 

stated his logicism most succinctly. In that work Frege builds up arithmetic from concepts. We 
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saw this in the MUC argument where Frege makes use of the difference between falling under 

and belonging to a concept. Frege’s logic, as he says himself, was the driving engine to search 

for the foundations of arithmetic. In the following chapters we will see that Frege was widely 

read by the mathematicians who would found set theory.   
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5: The Manhood of Logic 
 

 Propositions which are deduced from others by the operations of logic are theorems; 

 those for which this is not true I have called axioms. There are nine axioms here, and 

 they express fundamental properties of the undefined signs. 

 

        -Giuseppe Peano
176

 

         

 

Introduction 

 The logicist program of Gottlob Frege was, for all its novelty, ensconced in a 

philosophical tradition. The Foundations of Arithmetic was not something that would have found 

its way on to the bookshelf of most nineteenth century mathematicians. The same was true for 

the Begriffschrift; N.I. Styazkhin writes: 

 Unfortunately, Frege’s Begriffschrift was ignored by both philosophers and 

 mathematicians. The former were afraid of the complicated mathematical apparatus; 

 the latter, of the use of such terminology which they, as specialists, considered 

 “typically metaphysical”
177178

 

 

While this may be true for the Begriffschrift, I will show that Cantor and Dedekind were both 

influenced by The Foundations of Arithmetic. Nonetheless, The Foundations of Arithmetic also 

suffered from a lack of mathematical rigor. It is one thing to state that there is a logical 

foundation for mathematics, it is another to construct one out of logic, and it is still another to 
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hand the mathematician a tool. There are few mathematical concepts in the Begriffschrift. It was 

Frege’s program to get at the logic beyond mathematics per se. I will argue that Peano fits within 

the logicist tradition despite the influence he would have on David Hilbert and Formalism. This 

chapter will set out the accomplishments of Peano; I will argue that despite the linguistic barrier 

Peano fits within the research environment which consisted of Frege and Richard Dedekind.  

Peano’s Philosophy of Mathematics 

As we saw in the last chapter, foundational mathematics was coming under the strong 

influence of philosophy. Frege had founded logicism, particularly through his book The 

Foundations of Arithmetic. Giuseppe Peano was another early founder of logicism. A critique of 

this view would be that Peano was an early inspiration for formalism. But in the nineteenth 

century it is not particularly helpful to dwell on this, as formalism had to wait for David Hilbert 

to become anything like a school of philosophy. Historically we cannot tell much difference 

between proto-formalism and logicism. Formalism was a school that did not split away from 

logicism until after the period we are discussing. Hilbert himself was influenced by the logicist 

tome Principia Mathematica, as Wilder writes:  

Partly influenced, no doubt, by the work of Peano and his school as well as by the 

Russell-Whitehead work (there is evidence that for a time Hilbert was greatly impressed 

by the thesis that mathematics can be derived from primitive notions of logic), Hilbert 

decided upon a union of the axiomatic and logistic methods.
179

  

 

Peano’s approach was certainly more axiomatic than any of his day, but he still fell within 

logicism. I think this idea of formalism rising from a later split is convincing. It is convincing 

because Hilbert himself states that Russell and Whitehead’s logicism was influential to him. 

Also, Russell himself talks about the great influence Peano had upon him early in his career. 
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Russell writes about meeting Peano for the first time at the International Congress of Philosophy 

in Paris in 1900:  

In discussions at the Congress I observed that he was always more precise than anyone 

else, and that he invariably got the better of any argument upon which he embarked. As 

the days went by, I decided that this must be owing to his mathematical logic.
180

  

 

Speaking of Peano’s notation Russell wrote: 

 

It became clear to me that his notation afforded an instrument of logical analysis such as I 

had been seeking for years, and that by studying him I was acquiring a new and powerful 

technique for the work that I had long wanted to do.
181

 

 

Peano’s system of notation had great effect upon the generation of logicians after him. This 

notation allowed the mathematician to rigorously state the foundation of mathematics. The first 

of Peano’s papers we will discuss is a pamphlet entitled The Principles of Arithmetic (1889). In 

this work the algebra of classes mixed with logicism to create a foundation. In the work of Peano 

we see the logic of Frege and Boole mixed together. He was next only to Frege as the great 

advocate of logicism in the nineteenth century. 

Peano’s System 

As mentioned in the previous chapter Frege, working in the Kantian tradition, did not 

want to explicitly refer to axioms lest mathematics should fall into the synthetic a priori. This 

was a concern Peano didn’t have and he was quite comfortable with the idea of axioms of 

arithmetic. Peano developed nine axioms that were to form the foundation on which arithmetic 

was to be built. These are stated as follows, though not in their symbolic form:
182

 

 1. One is a natural number. 

 2. If a is a natural number then a=a. 
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 3. If a and b are natural numbers then a=b is equivalent to b=a.
183

 

 4. If a, b, and c are natural numbers then if a=b and b=c then a=c. 

 5. If a=b and b is a natural number then a is a natural number. 

 6.  If a is a natural number then a+1 is a natural number. 

 7. If a and b are natural numbers and a=b, then a+1 = b+1.  

 8. If a is a natural number then a+1 cannot equal 1. 

 9. If k is a class and 1 is a member of k and x is a member of k and x is a natural  number, 

 then if x+1 is a member of the class k then all the natural numbers are members of the 

 class k.   

 

These axioms set the definitions of natural numbers and how they were to behave. Three of 

Peano’s axioms are particularly important for us. The first axiom states that 1 is a natural 

number. It is important to note here that this axiom does not state that 1 is the first natural 

number. The eighth axiom excludes 0 from the natural numbers. This is because if 0 is a natural 

number then 0+1=1, which violates the eighth axiom. The ninth axiom has come to be known as 

the mathematical induction principle and will be important in our discussion of Richard 

Dedekind. This axiom allows mathematicians to prove statements about natural numbers. 

 Peano’s work was part of a new movement in mathematical research into the foundations 

of arithmetic. This movement looked to logic as a way of constructing mathematics. Peano 

formed a research environment along with Gottlob Frege and Richard Dedekind. It was this 

environment that would eventually overflow into Georg Cantor’s set theory. Styazkhin writes: 

 It should be noted that Peano’s axiomatization was to a significant degree inspired by 

 the ideas expressed by R. Dedekind in his treatise. In general, Peano was under the 

 strong influence of the theory of functions developed by Dedekind.
184
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Peano took up the logicism of Frege, although he would also be influential in formalism.
185

 

However, Peano cites Boole as having a great influence on The Principles of Arithmetic (1891) 

and in places he uses Boole’s notation. Principles of Arithmetic contains the law of idempotence, 

aa=a, just as The Mathematical Analysis of Logic does. Peano was not wary of the psychologism 

of Boole’s system, perhaps because of the use of arithmetic in his logic. It might have been that 

logic didn’t seem psychological to Peano. Peano agrees with Boole’s quantification of the 

predicate. A = B for Peano can be symbolized as (A >B) ˄ (A<B).  In his notation he melds the 

algebra of classes with the propositional logic of Frege and the logicist program N.I. Styazkin 

writes: 

 Rather, the significance of Peano’s total achievement lies in its being a transitional 

 link between the algebra of logic (in the form given by Boole, Schroder, Peirce, and 

 Poretskiy) and the contemporary form of mathematical logic.
186

 

 

By “contemporary form” Styazkhin means propositional logic, the logic of Frege. Peano resolves 

the divide between Frege’s and Boole’s notation. 

 The “Ɔ” used by Peano symbolizes a Frege style implication. In The Principles of 

Arithmetic Peano mentions Frege’s implication as an analog for his own. In 1890 Peano was 

familiar with the Begriffschrift. Peano also symbolizes class membership, in Boole’s sense, with 

“ε.” Here we can see the melding of the algebra of classes and propositional logic. It is useful, 

now, to go into an explication of Peano’s notation in The Principles of Arithmetic. As mentioned 

above, Peano splits the class and propositional interpretation of logic. He allows for class 

membership and implication. Peano introduces the signs ., :, , and ::. These replace the use of 
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parentheses. (((ab)(cd))((ef)(gh)))k would be symbolized as, ab.cd:ef.ghk.
187

 Peano uses a 

backwards “ε,” this can be translated as “such that.” On the left side is a variable, or variables, on 

the right side are the conditions they must satisfy. This would be used to signify a proposition 

like “an X such that it is a natural number and is greater than all natural numbers does not exist.” 

“Such that” will sometimes be symbolized as “[ε].” Peano calls this “inversion.” He symbolizes 

the natural numbers as N, the rational numbers as R, and the real numbers as Q. The positive real 

numbers he calls quantities. “K” symbolizes a class, it can be taken as the class of classes. So, 

aεKN means that a is a class of natural numbers. “Λ” is the notation for the empty class. Peano 

calls “Λ” absurdity. He writes: 

 Propositions (I)(A) and (II)(E) cannot coexist, supposing that class A is not empty. 

 Certainly, when the logicians affirm that two contrary propositions cannot coexist, 

 they understand that class A is not empty; but although all the rules given by the 

 preceding formulas are true no matter what the classes which make them up, 

 including 0 and 1, this is the first case in which it is necessary to suppose that one of 

 the classes considered is not empty.
188

 

 

We have mentioned in earlier chapters that logicians had long disallowed the existence of empty 

classes in their logics. What Peano is telling us here is that making A and E mutually exclusive is 

the first place in his system where one must follow suit with the earlier logicians. What is 

important here is that Peano is treating the quantification of the predicate as an exceptional case. 

Peano disallows the the empty class only to fit one interpretation. Another interpretation, using 

the notation in the quote above, is to say that if A and E can exist then A is empty. The choice is 

left to the logician. 

    Peano introduces the symbol Ɔx. He uses it in symbolizing his ninth axiom. Peano makes 

two statements of interest to us on this topic in his 1897 article “Studies in Mathematical Logic.” 
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He writes that p Ɔx,…,z q means, “‘whatever x,…,z are, as long as they satisfy the condition p, 

they will satisfy the condition q.’ The indices to the sign Ɔ are omitted when there is no danger 

of ambiguity.”
189

 This notation is used if variables like x and y are used in p or q. The notation is 

necessary in Peano’s ninth axiom because the hypothesis of the implication contains the 

variables k and x. The notation holds continuity from the value of x in the hypothesis to the 

consequent. x+1 must be made to be the successor of x in the hypothesis.
190

           

 Peano was familiar with point sets, and more importantly Cantor’s work in them. Peano 

writes: “Finally, in S10 I have given several theorems, which I believe to be new, pertaining to 

the theory of those entities which Professor Cantor has called Punktmenge.”
191

 Punktmenge here 

is translated as “point set.” The section of Principles of Arithmetic Peano is referring to is the 

section on quantities, or real numbers. Georg Cantor, Richard Dedekind, and Peano are dealing 

with the location of points in a set. Phillip Jourdain writes of Cantor’s consideration on this 

subject: 

 If we are given a system (P) of points in a finite interval, and understand by the word 

 “limit- point” a point of the straight line (not necessarily of P) such that in any interval 

 within which  this point is contained there is an infinity of points of P, we can prove 

 Weierstrass’s theorem that, if P is infinite, it has at least one limit-point. Every point of P 

 which is not a limit-point of P was called by Cantor an “isolated” point.
192

 

 

Discussing Peano’s consideration of this subject will show what was of concern with limit 

points. Peano creates three symbols: Ia, Ea, and La. These are respectively, interior point, 

exterior point, and limit point. Peano’s interior point is Cantor’s isolated point. Let us now look 
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at what Peano was saying about these points. Here are two translated definitions Peano gives us 

in Principles of Arithmetic
193

,  

 If a is a class of quantities then, Ea = I(-a) 

 If a is a class of quantities then, La = (-Ia)(-Ea) 

The “-” sign denotes negation. The first proposition states that an exterior point to class a is an 

interior point to class -a. The second proposition states that a limit point is neither an interior 

point nor an exterior point. Limit points were a point of overlap between logic and set theory 

because logic delved into the construction of the use of points in Peano. These points were 

discussed heavily in the formative years of set theory. They became important enough to 

mathematicians that Peano felt the need to construct them.      

 Peano’s investigations were repeated by other figures in this narrative. His twenty-third 

theorem under the section “Subtraction” was repeated by both Frege and Dedekind. It states that, 

“If a and b are natural numbers then, either a < b, or a = b, or a > b.”
194

 This is a proposition 

about rank and it is the most fundamental proposition about rank. Peano also delved into the 

order of the members of a class. Cantor and Dedekind had similar treatments. He provides three 

definitions concerning what he calls the maxima and minima. The maxima is the greatest 

member of a class, and minima is the least member of a class. Peano writes: 

 If a is a class of natural numbers then the maxima of a is a number x such that x is a 

 member of a and a member of a such that it is greater than x does not exist. 

   

 If a is a class of natural numbers then the minima of a is a number x such that x is a 

 member of a and a member of a such that it is less than x does not exist. 

 

 If n is a natural number and a is a class of natural numbers and a is not empty, and, if 

 there is no member of a greater than n then, the maxima of a is a natural number.
195
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The concepts of maxima and minima will be important in the work of Dedekind and Cantor. One 

of the big moves in logic was to become more interested in the members of a class and not just 

the class as a whole. These figures were more interested in discussing the rank of members of a 

class. 

 Peano mentions early in Principles of Arithmetic that he especially made use of Boole’s 

algebra of classes. However, the influence of Boole on Peano is perhaps better seen in Peano’s 

1888 treatise The Geometrical Calculus. The opening chapter on deductive logic pertains to an 

algebra of classes much like Boole’s. Peano writes: 

 By the expression A ˄ B ˄ C ˄  . . ., or ABC . . ., we mean the largest class contained 

 in the classes A, B, C, or the class formed by all the entities which are at the same 

 time in A and B and C, etc. The sign ˄ is logical conjunction. We shall also call it 

 logical multiplication, and say that the classes A, B, . . . are factors of the product 

 AB. . .
196

 

 

Peano shares the algebraic analogy with Boole. Both men have logical multiplication in their 

systems. Both are using a class interpretation of logic. Peano, specifically, is doing this after the 

publication of the Begriffschrift. Peano also uses implication as the Begriffschrift used it, in 

Principles of Arithmetic. 

 Peano, like Frege, was also writing a language for science and logic. Peano writes: “I 

believe, however, that with only these signs of logic the propositions of any science can be 

expressed.”
197

 This was perhaps not so big a motivation for Peano as it was for Frege. Peano’s 

attempt seems more directed to the mathematician as his use of axioms allow for building up the 

language of science and mathematics. Frege’s Begriffschrift never seemed as concerned with 

mathematics as The Principles of Arithmetic does. Peano stated his system as: 
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 One of the most notable results is that, with a very limited number (7) of signs, it is 

 possible to express all imaginable logical relations, so that with the addition of signs 

 to represent the entities of algebra, or geometry, it is possible to express all the 

 propositions of these sciences.
198

 

 

Peano’s aim was at a language for mathematics, Frege’s was at a language for science. Although 

as the above shows, even Peano could not help imagine his system working fall all of science. 

Peano writes about Frege’s reaction to his system. He writes: “he (Frege) expresses doubt that 

my ideography can serve to do more than express propositions.”
199

 Frege’s dream was to develop 

a logical language with which new knowledge could be created by the combination of symbols. 

Frege was criticizing Peano’s system because he felt that it did not get to the concepts beyond the 

propositions.  

 Peano used inclusive disjunction. This can be seen in the example he gives in The 

Geometrical Calculus in which the numbers that are greater than 1 or less than 2 comprise the 

universe. This would not be the case if disjunction were exclusive because the numbers between 

1 and 2 would be left out. Peano states that (A=O) ˄ (B=O)= (A˅B=O). Stating that each 

individual of a series of classes is empty is logically equivalent to saying that the logical addition 

of all those classes is an empty class. Peano symbolizes Barbara
200

 as: (A < B) ˄ (B < C) < (A < 

C).  In his notation then we would have the proposition A as: A < B. E would be: A < ~B. I would 

be: ~(A < ~B) . And O would be: ~(A < B). In order to show the sort of proofs Peano was trying 

to construct we will look at one. Peano puts forth the theorem that 2 is a natural number. He 

begins by referring to axiom one that 1 is a natural number. He then refers to axiom 6 replacing a 
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with 1. He then derives the proposition that the sum of 1 and 1 is also a natural number; he does 

this with modus ponens. He then makes reference to the definition that 2 is equivalent to 1 + 1. 

That is, 2 is the symbol for 1 + 1. He finally refers to axiom five. Since 1 + 1 is a natural number 

and 2 is equivalent to it, then by axiom five 2 is a natural number. One can get a hint of why 

formalists like Hilbert would look to Peano as an inspiration.    

 In his 1897 “Studies in Mathematical Logic” Peano introduces the existential quantifier. 

He translates this as “there exists.” It should be noted that Frege was able to get by with just the 

universal quantifier. Likewise, because of the same equivalency Peano is able get by with just the 

existential quantifier. In this same paper Peano also touches upon set theory. He gives the 

following three theorems: 

 a, b ε K.Ɔ(f ε bfa.=:x ε a.Ɔx.fxεb   

 a, b ε K. Ɔ(f ε (bfa)Sim.=: f ε bfa: xy ε a. x ~= y. Ɔxy.fx ~= fy 

 a, b ε K. Ɔ(f ε (bfa)rcp.=: f  ε (bfa)Sim : y ε b . Ɔy . ∃ [xε](x ε a.fx = y)�  

 The first of these theorems states that: If a and b are classes then; f being a correspondence 

between b and a is equivalent to, if x is a member of a then whatever x is the f-correspondent to x 

is a member of b. The second theorem states that: If a and b are classes then; f being a similar 

correspondence between b and a is equivalent to, if f is a correspondence between b and a, and x 

and y are members of a, and x does not equal y then, f-correspondent x is not equal to f-

correspondent y. The third theorem states that: if a and b are classes then; f being a reciprocal 

correspondence between b and a is equivalent to; if f is a similar correspondence between b and 

a, and y is a member of b then, whatever y is, there exists an x such that x is a member of a and 
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the f-correspondent of x equals y. Here we see some of the same observations that we will see 

with Dedekind.
202

  

Conclusion 

Peano continued the logicist program from Frege. Formalism was not a recognizable 

school yet. Frege’s comments and Peano’s treatment perhaps illustrates the points where 

formalism began to break away from logicism. As mentioned earlier, Frege’s critique of Peano’s 

notation was just that it didn’t get to the underlying logic. He made it more mathematically 

rigorous. With his axioms Peano hoped to create a system in which the proposition of science 

could be expressed. A fundamental investigation into arithmetic was necessary in the case of 

Peano and Frege, because of the strange findings that were coming out of the work of Dedekind 

and Cantor.  
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6: A Dictionary for Set Theory 
 

Introduction 

Richard Dedekind’s investigation of the infinite was very much in line with Bernard 

Bolzano’s work. Richard Dedekind (1831-1916) was Bolzano’s successor in the investigation of 

infinity. He meshed infinity with the logicism of Gottlob Frege. Both Dedekind and Frege 

believed that mathematics rested upon logic.Like Bolzano, Dedekind offered a definition of 

infinity. The main accomplishments of Dedekind are that he rigorously constructed the real 

numbers using the Dedekind cut. He also combined logicism with set theory. This system 

consisted of a vocabulary and elementary theorems derived from the vocabulary. The work of 

Dedekind is the first time in our narrative that logicism made an impact on considerations of 

infinity. The foundational program seen in Giuseppe Peano and Frege ran into a concern over 

infinity in the work of Dedekind. This concern was cross-pollination between the mathematical 

logic strain and the set theory strain. Dedekind’s investigation was in large part duplicated by 

Peano. This was another point of contact between the logical strain and the set theory strain. 

Much of this chapter will be about cross-pollination between Dedekind and Peano on the one 

hand, and Dedekind and Frege on the other. This chapter will show how Dedekind created a 

vocabulary for concepts in set theory. This foundational program required a new vocabulary and 

much of what Dedekind offers us is definitions. The new vocabulary rigorous and necessary for 

this program was partly created by Dedekind. The works that will be discussed here are 

“Continuity and Irrational Numbers” (1872) and “The Nature and Meaning of Numbers” (1888). 
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His program was slightly different from that of Cantor, who will be discussed in the next 

chapter. “The Nature and Meaning of Numbers” was published in 1888, fourteen years after 

Cantor published his first paper on set theory. But Cantor’s program was not foundational; 

Cantor mentions little of constructing arithmetic from sets. Dedekind did try to construct 

arithmetic from set theory.     

Dedekind was born in 1831 in north Germany. He studied mathematics at Göttingen 

where he studied under Peter Gustav Lejeune Dirichlet and Bernhard Riemann. Both men would 

have great influence on Dedekind. Dedekind taught at Göttingen and Zurich before ending up at 

Brunswick, the city where he was born. He taught at a university in Brunswick until his 

retirement in 1896. Dedekind was part of the wave of German influence that swept over the 

mathematical world in the nineteenth century. Dedekind studied at Göttingen and for a short 

period at Berlin. He was involved with the great German mathematicians of his day and in his 

later years would be an established supporter of Georg Cantor and set theory. This is important, 

as we will see, because of the criticism Cantor faced when he made his ideas known. Before 

discussing the body of Dedekind’s work, we should pause for a discussion of Dedekind’s 

method, particularly in “The Nature and Meaning of Numbers.” These are definition, theorem, 

and proof. The definitions Dedekind provided gave a rigorous vocabulary: They carry Bolzano’s 

founding program further. After a new piece of vocabulary is provided, Dedekind immediately 

sets to stating theorems using the new terms. These theorems are, in turn, proven. The theorems 

and proofs serve to fill out this new vocabulary and direct Dedekind’s program. How this 

vocabulary played in a proof added further definition.      
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Dedekind’s Definitions 

 The first definition we will discuss is Dedekind’s definition of infinity. It was he who 

defined infinity in a rigorous way to allow set theory to be developed. For Dedekind an infinite 

set was one which could be put into a one-to-one correspondence with a proper subset
203

 of 

itself. For example, the natural numbers can be put into a one-to-one correspondence with the 

even natural numbers as follows: (1,2)(2,4)(3,6)(4,8)(5,10)(6,12) . . . This makes the set of 

natural numbers infinite, or Dedekind infinite. Here, the set of natural numbers is placed into a 

one-to-one correspondence with the even natural numbers by applying the function 2n to the 

natural numbers.
 204205

 On the other hand, the natural numbers one through fifteen cannot be 

placed into a one-to-one correspondence with the natural numbers from ten to fifteen as is 

shown: (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,?). The numbers one through fifteen cannot be put 

into one-to-one correspondence with this proper subset of itself. And, indeed, the set of natural 

numbers one through fifteen is not infinite. A proper subset in this context has a very precise 

meaning that is to be distinguished from the term “subset.” A subset is any part of a set including 

the entire set itself. A proper subset is a part of a set, but it is not the entire set itself. The term 

“proper subset” is comparable with “part” in Bolzano’s definition of infinity. The distinction 

between “subset” and “proper subset” makes Dedekind’s definition more rigorous than the 

holomerism of Bolzano. 

                                                 
203

 “Proper subset” is used here as opposed to “subset”. “Proper Subset” has the precise meaning of being only a part 

of the set of which it is a “proper subset”. “Subset” on the other hand can refer to part of or the whole set of which it 

is a “subset”   
204

 Dedekind uses the term “transform.” 
205

 A short word on this function. Dedekind calls this a “transformation” and writes: “By a transformation 

[Abbildung] ф of a system S we understand a law according to which to every determinate element s of S there 

belongs a determinate thing which is called the transform of s and denoted by ф(s); we say also that ф(s) 

corresponds to the element s, that ф(s) results or is produced from s by the transformation ф, that s is transformed 

into ф(s) by the transformation ф.”(Richard Dedekind, Essays on the Theory of Numbers (New York: Dover, 1963), 

50) : “S” here is the set of natural numbers. A transform ф  of each member s of S produces the system S’ composed 

of all the transformed members of S. In our usage the system of even numbers would be S’. The transform would be 

2n. When defining a transformation Dedekind cites the mathematician Gustav Dirichlet who will be discussed later. 

A transform is similar to what is called a mapping, or imaging in Cantor’s. Dedekind, in his leeter to Keferstein   
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 The next definition to discuss is that of “simply infinite.” “Simply infinite” resembles 

what Cantor termed the aleph null. Dedekind writes: “All simply infinite systems are similar to 

the number-series N and consequently by (33) also to one another.”
206

 This is a fact that Cantor 

will show with his proofs. The set of natural numbers is the benchmark for the simply infinite. 

Dedekind is stating the same thing Cantor showed by proving equinumerosity between the 

natural numbers and the algebraic and rational numbers. Dedekind writes: “A system N is said to 

be simply infinite when there exists a similar transformation ф of N in itself such that N appears 

as chain (44) of an element not contained in ф(N).”
207208

 Dedekind writes “there exists” so we 

only need to show that there is one such transformation. Dedekind is saying here that a system N 

is simply infinite if it can be transformed into another system N’ that is part of N and such that N 

is a chain which increases by an element not included in N’.
209

 To unpack this further, we saw 

that the natural number system is a chain that increases by an element of one. As we did earlier, 

we can apply the transformation n+1 on all the natural numbers and generate the successors of all 

natural numbers which does not include the number one.
210

 Now let us try this with the real 

numbers. Suppose we applied the transformation n+1 to the real numbers. We would start at (.1, 

.2) and (1.1, 1.2) but then what about (.01,.02) and (.02,.04). Thus, the real numbers are not a 

chain by the transformation n+1. In this case we cannot get the successors of real numbers. But 

also, there is no lowest real number so we can never say that one was not a member of the 

transform of the real numbers. We would have .0000… and n + 1 would be 1.0000…, which is 
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 Richard Dedekind, Essays on the Theory of Numbers (New York: Dover, 1963), 92. 
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 “similar” in this quote will be defined in the next chapter, as it is a concept properly identified with Georg Cantor. 

It suffices to say here the “similar” means order preserving. That is, whatever order was in the domain of the 

transform will be found in the range.             
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 1 is the first natural number. 
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just the same as one.
211

 What is at play here is that it is not possible to get to the next real number 

by any transform of real numbers. We cannot find a first real number or a next real number. 

Therefore, the real numbers are not simply infinite.  

The next definition we will discuss is that of a “chain.” This idea would become central 

to set theory in the twentieth century. Dedekind writes: 

 K is called a chain [Kette], when K'϶K. We remark expressly that this name does not 

 in itself belong to the part K of the system S, but is given only with respect to the 

 particular transformation ф; with reference to another transformation of the system S 

 in itself K can very well not be a chain.212213 

 

For Dedekind, a chain occurs when a set contains its own transform. For example, the transform 

2n creates a chain from the natural numbers since the set of even numbers is itself a part of the 

natural numbers. It is important to note here that a transform makes a certain chain. “Chain” is 

not a label that can be affixed to a set, but rather a function is chain forming. The natural 

numbers are not a chain when the transform n/2 is considered. This transform would give us the 

set {.5, 1, 1.5, 2, 2.5…} which are not all natural numbers. 

   Dedekind then turns his definitions on the natural numbers. He defines the concept of the 

simply infinite when he writes: 

 If in the consideration of a simply infinite system N set in order by a transformation 

 ф we entirely neglect the special character of the elements; simply retaining their 

 distinguishability and taking into account only the relations to one another in which 

 they are placed by the order setting transformation ф, then are these elements called 

 natural numbers or ordinal numbers or simply numbers, and the base-element 1 is 

 called the base-number of the number-series N.
214
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 The proof is: 10n-1n= m; m is 9 whether we use 1 or 1.000…Cantor would use a similar method in his  

proofs.   
212

 Dedekind, Essays, 56. 
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 In Dedekind’s notation ϶ means membership of the left element in the right element. Whereas in Peano’s notation 

ε is the symbol for membership. In Dedekind’s notation A is a member of B would be written A ϶ B; in Peano’s 

notation it would be A ε B. See page 46 where Dedekind introduces ϶.   
214
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For Dedekind, the natural numbers compose a series, set up by a transform. The relations that are 

integral to ranking are predecessor and successor. The natural numbers are a series such that the 

element of transform is one. This concept should receive closer scrutiny. Dedekind writes in his 

letter to the mathematician Hans Keferstein from 1890: “I define the number 1 as the basic 

number of the number sequence without any ambiguity in articles 71 and 73.”
215

 Dedekind 

writes in article 71: “We call this element, which we shall denote in what follows by the symbol 

1, the base-element of N and say the simply infinite system N is set in order by this 

transformation ф.”
216

 In the simply infinite system N every number can be reached from every 

other number successive increase or decrease by one. Peano’s successor axiom similarly has 

working behind it the base element one. Dedekind recognized the same similarity with Fege in 

his letter to Keferstein when he writes: 

 Frege’s Begriffschrift and Grundlagen der Arithmetic came into my possession for 

 the first time for a brief period last summer (1889), and I noted with pleasure that his 

 way of defining the non-immediate succession of an element upon another in a 

 sequence agrees in essence with my notion of a chain; only, one must not be put off 

 by his somewhat inconvenient terminology.
217

  

   

To clarify this further if a system K is a chain then a transform ф(K) produces a system K’ such 

that K’ is a subset of K. The system K is simply infinite if there is a transform of an element such 

that element is not contained in K’. The best example for the system of natural numbers is the 

transform into the system of successors of natural numbers. For this, we would set up a transform 

n + 1.      
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Dedekind’s Construction of the Real Numbers 

Dedekind engages with other writers in this history. This engagement centers on 

Dedekind’s ideas in “The Nature and Meaning of Numbers.” Dedekind, Peano, Bolzano, and 

Frege read each other; however, the engagement goes deeper than this. Many of the results these 

mathematicians reach were the same. Dedekind cites Bolzano’s proof of the existence of the 

infinite. Dedekind’s treatment of infinity is similar to Bolzano’s. Ferreiros writes of this: 

 It is well known that, in the meantime, Dedekind read Bolzano’s Paradoxien des 

 Unendlichen, where a similar proof is presented (Bolzano 1851, S13). Bolzano’s  proof 

 seems to have motivated Dedekind to include this theorem,
218

 

 

Dedekind was also influenced by Georg Cantor who will be discussed in the next chapter. 

Dedekind was in correspondence with Cantor, although he does not cite Cantor often. Cantor 

was almost underway in his own considerations of sets when Dedekind wrote these two papers. 

In “Continuity and Irrational Numbers,” Dedekind mentions having received a paper by Cantor 

on trigonometric series in 1872. Dedekind also cited Leopold Kronecker who as we will see had 

a vicious debate with Cantor over the latter’s transfinite arithmetic.
219

 Dedekind felt that 

Kroenecker’s approach to the “logic which deals with the theory of numbers”
220

 was 

unsatisfactory. Dedekind criticizes Kroenecker’s intuitionism, a sign that Dedekind had logicistic 

leanings. As already mentioned, Bolzano defined of infinity. Dedekind stated infinity more 

rigorously and it is his infinity that has since been adopted by mathematicians. The historian Jose 

Ferreiros writes of this: 

 Bolzano tried to build up a precise theory of the mathematical infinite, but after being 

 close to the right point of view, he departed from it in quite a strange direction. Bolzano 

 stated clearly the fact that two infinite sets can be put in a one-to-one correspondence 
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 while one of them is a subset of the other. (Bolzano 1851, 27-28) But from this he did not 

 conclude that they have equal cardinality.
221

 

 

 

Dedekind continued the practice of the research environment of describing the arrangement of 

members of a set. What he also did was expand discussion from arithmetic to numbers more 

generally. He brought logicism to the real number system. Dedekind was concerned with 

constructing the real numbers. Constructing the real numbers, by definition, means constructing 

the rational and irrational numbers. The rational numbers had long been well defined and 

constructed. The irrational numbers were not defined except negatively as “not rational.” 

Mathematicians acknowledged that irrational numbers exist ever since the ancient Greeks. They 

could name some irrational numbers, for example √2. Dedekind made irrational numbers almost 

as well understood as rational numbers. He accomplished this with his most well-known idea, the 

Dedekind Cut.     

 To discuss where the Dedekind Cut came from, it is necessary to understand the history 

of irrational numbers.
222

 Irrational numbers were discovered by the Pythagorean mathematicians 

of ancient Greece. It was believed at the time that all the points on a line corresponded to rational 

numbers. The rational numbers between 0 and 1 can be thought of as an integer over another 

integer that divides a unity length. So the number 1/5 says that we divide the unit length into five 

equal parts, 1/5 is one of these parts. Mathematicians had faith that two lines could always be 

compared with rational numbers. This is because they believed that there was always a way to 

divide one line into equal units that would in turn divide into the second line a whole number of 

times, whether they be fifths, sixths, twentieths, etc. What the Pythagoreans discovered was that 
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this comparison is not always possible. The most well-known irrational number is √2.
223

 If one 

considers the Pythagorean Theorem for a triangle with sides of unit length one will see the crisis 

that irrational numbers cause.  

  

 

The Pythagorean Theorem is written as a
2
 + b

2
 = c

2
. If a triangle has sides of unit length, then 

this becomes 1 + 1 = 2. Thus, finding the hypotenuse requires calculating the square root of two. 

What we find is that there is no way to break up the unit length into equal pieces such that one of 

these pieces will divide c a whole number of times. Hence, the problem with this triangle above 

is that c being irrational pulls it out of the paradigm of measurement that was used for the sides a 

and b.   

 The Dedekind cut was expounded in an 1872 paper titled “Continuity and Irrational 

Numbers.” Dedekind was trying to construct the real number system but as he himself admitted: 

But what advantage will be gained by even a purely abstract definition of real numbers of 

a higher type, I am as yet unable to see, conceiving as I do of the domain of real numbers 

as complete in itself.
224
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 A proof of the irrationality of √2 is offered in the appendix. 
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It should be noted that Dedekind is providing a new definition of the real numbers. But this is 

only as good a definition as it is useful. We will go into some of the powerful usefulness of this 

definition. Dedekind begins by relating arithmetic to geometry through an analogy between real 

numbers and geometric line. If we lay down a stick √2 units long starting at 0 the tip will fall on 

a point that corresponds to no rational number. If, like the Greeks, we supposed our ruler to 

consist only of rational numbers, then we may be surprised to find a gap, a Dedekind gap. 

Dedekind says that gaps like these are filled with the irrational numbers.  

 Dedekind defines rational and irrational numbers with a cut. He begins by instructing us 

to take the system of rational numbers and to put them on a number line. We choose one number 

and say all numbers less than this number are members of the set A1, and all numbers greater 

than this number are members of the set A2. Take the illustration below: 

 

Here we can see that the cut is performed at the rational number 5/3. Dedekind tells us that the 

mathematician has the freedom to choose which set (A1 or A2) 5/3 itself is to belong to. 

Furthermore, this cut--and any cut that corresponds to a rational number splits the rational 

number system into two parts. Now, since we have put 5/3 into A1 or A2 either A1 has a greatest 

member, 5/3, or A2 has a least member, 5/3. This, then, is the definition of a rational number. 

Dedekind writes: “The property that either among the numbers of the first class there exists a 

greatest or among the numbers of the second class a least number.”
225

 A rational number then is 

defined by the cut it forms. Next Dedekind provides a proof of the existence of irrational 
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numbers using the idea of a cut.
226

 He shows that there are certain cuts that can be made such 

that the cut does not meet the definition above of a cut at a rational number. If we make a cut and 

A1 has no greatest member and A2 has no least member, then the cut corresponds to no rational 

number. As Dedekind writes: “Whenever, then, we have to do a cut (A1, A2) produced by no 

rational number, we create a new, an irrational number a, which we regard as completely defined 

by this cut.”
227

 I will mention only one example of what can be done with cuts. Dedekind used 

cuts to define addition between real numbers. The equation a + b = c can be defined in terms of 

cuts. The numbers a, b, and c are real numbers. We imagine that a and b describe cuts.
228

 

Dedekind describes addition thus. We place in C1 all real numbers c such that a + b ≥ c. In C2 we 

place all numbers c’ such that a + b ≤ c. This addition then is a function in which any member of 

A1 added to any member of B1 yields a member of C1. Any member of A2 added to any member 

of B2 yields a member of C2.
229

 Therefore, a + b describes a cut c in the real numbers.
230

     

Dedekind’s Part in the Research Environment 

 Dedekind was the figure in the set theoretical strain to have the most interaction with 

Frege and Peano. Dedekind mentions having read Frege’s The Foundations of Arithmetic. He 

writes: 

About a year after the publication of my memoir I became acquainted with G. Frege’s 

 Grundlagen der Arithmetik, which had already appeared in the year 1884. However, 

different the view of the essence of number adopted in that work is from my own, yet it 

contains, particularly from S 79 on, points of very close contact with my paper, especially 

with my definition (44). The agreement, to be sure, is not easy to discover on account of 

the different form of expression; but the positiveness with which the author speaks of the 

logical inference from n to n+1 (page 93, below) shows plainly that here he stands upon 

the same ground with me.
231
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 An exposition of this proof is located in the appendix. 
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230

 See appendix for one of Dedekind’s proofs utilizing cuts. 
231

 Dedekind, Essays, 42-43. 



107 

 

 

What Dedekind claims here is that he and Frege have about the same idea as to how succession 

in a series might be logically constructed. But like Peano, Dedekind offered the reader more 

mathematical rigor than Frege. He cites the German logician Ernst Schroder. He mentions 

Schroder’s Lehrbruck der Arithmetik und Algebra, writing, possibly in response to some 

criticism Schroder made of his notation: 

 I will simply confess that in spite of the remark made on p.253 of Part I., I have  retained 

 my somewhat clumsy symbols (8) and (17); they make no claim to be adopted generally 

 but are intended simply to serve the purpose of this arithmetic paper to which in my view 

 they are better adapted than sum and product symbols.
232

 

 

 

It will be seen later that Frege made a similar criticism. 

Dedekind was also paralleling work done by Giuseppe Peano. The Dedekind’s work was 

more concerned with set theory than “Principles” was. Peano would write on set theory later in 

his career. In the time period this thesis covers there is little mention of sets. Dedekind, on the 

other hand, conceived of his logicist program from the vantage point of set theory. In the chapter 

on Peano we saw that Peano’s ninth axiom was the axiom of mathematical (or complete) 

induction and was stated thus: 

 If k is a class and 1 is a member of k and x is a member of k and x is a natural number, 

 then x+1 is a member of the class k which in turn means that all the natural numbers are 

 members of the class k.   

 

In “The Nature and Meaning of Numbers,” Dedekind relies heavily on complete induction. He 

provides an axiomatic treatment of it in line with Peano’s. Dedekind writes this axiom as 

follows: 

The preceding theorem, as will be shown later, forms the scientific basis for the form of 

demonstration known by the name of complete induction (the inference from n to n+1); it 

can also be stated in the following manner: In order to show that all elements of the chain 
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A0 possess a certain property E (or that a theorem S dealing with an undetermined thing n 

actually holds good for all elements n of the chain A0) it is sufficient to show 

 ρ. that all elements a of the system A possess the property E (or that S holds for all 

 a’s) and 

σ. that to the transform n’ of every such element n of A0 possessing the property E , 

belongs the same property E (or that the theorem S, as soon as it holds for an element n of 

A0, certainly must also hold for its transform n’).
233

 

 

The property E is held by every n and any element derived by application of the successor 

transform to n, in the case of the natural numbers n + 1. This is similar to the transform x+1 in 

Peano’s axiom. Successor in Peano’s terms must be put into transform in Dedekind’s terms. And 

this does make sense, if a property is true for n and n+1, then that property must be held by the 

successor transform of n, n’.      

Dedekind writes that if m and n are taken as numbers than one of the following situations 

is true: 

1. m = n  n = m  i.e. m0 = n0 

2. m < n  n > m  i.e. n0 ϶ m’0
234

 

3. m > n  n < m  i.e. m0 ϶ n’0
235

 

We saw that in “Continuity and Irrational Numbers” Dedekind provided a construction of the 

real numbers. One instance in which this construction proves useful is in defining the signs <, >, 

and =. Dedekind defines these relations using cuts. In the real numbers a number a is greater than 

b if, for their cuts, there are two numbers such that they are members of A1 and members of B2. If 

there is only one number in A1 that is in B2 then the cut correspond to the same real number since 

with a cut of the rational numbers we are allowed to choose to which set the cut number belongs. 

This difference between A and B just corresponds to a difference in this choice and nothing 

more. Furthermore, if there are two or more members of B1 that are members of A2 then we say b 
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is greater than a. Thus we see the power of the Dedekind cut. Mathematicians of this time were 

concerned with providing a rigorous foundation for the real numbers because the real number 

system played a larger role in mathematics than in any previous century. 

Frege conceived of <, >, and = in the same way as Dedekind did. He defines equivalence 

through MUC. Frege conceived of < and > in terms of successors. Thus, A < B would be: 

 A ф C ф D ф E ф B 

This would be for the natural numbers where ф = n+1. Dedekind writes almost the exact same 

thing, B is a member of the set of successors of A. This allows < and > to work for real numbers. 

Accompanying the arithmetic symbols in Dedekind’s quote are included the corresponding set 

theoretical symbols. Frege wrote a similar passage in the Begriffschrift. Frege interprets A < B as 

B following A in the ф-series. Dedekind mentions in his letter to Hans Keferstein the pleasure of 

these similar treatments of the non-immediate successor. Peano states the same idea in 

Principles. In theorem 23 he writes: “a, b ε N: Ͻ : a < b.  .a = b.  .a > b.”
236

 In translation this 

states that if a and b are natural numbers then a is less than, equal to, or greater than b. These 

three thinkers, Dedekind, Frege, and Peano represent the mixing of logic and sets in the 

formation of arithmetic and numbers in handling <, >, and =. Frege, however, was not altogether 

sympathetic with Dedekind’s program. Ferreiros tells that Frege criticized Dedekind on two 

counts.
237

 The first was that Dedekind’s notation was unwieldy. The second was that Frege 

accused Dedekind of neglecting the empty set. Ferreiros argues that the second criticism is unfair 

since Dedekind had introduced the empty set in an unpublished capacity, and ,in the conceptual 

way Frege would have approved of. 
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 Let us look at one more area of overlap that is a bit more interesting. This concerns just 

Peano and Dedekind. In Peano’s chapter we saw his treatment of the Maxima and Minima. 

Peano puts forth the following three definitions: 

1. If a is a class of natural numbers, then the greatest natural number of a equals an x, 

such that x is an a, and no a is greater than x. 

2. If a is a class of natural numbers, then the least natural number of a equals an x, such 

that x is an a, and no a is less than x. 

3. If n is a natural number and a is a class of natural numbers and a is not empty and 

 there is no a such that it is greater than n, then the Maxima of a is a natural 

 number.
238

 

      

Dedekind uses the ideas of the Maxima and Minima for different purposes. He uses them as tests 

for infinitude. In articles 121, 122, and 123 of “The Nature and Meaning of Numbers”; he writes: 

 

 121. Every part E of the number-series N, which possesses a greatest number (111), 

 is finite. 

 122. Every part U of the number-series N, which possesses no greatest number, is 

 simply infinite  

 123. In consequence of (121), (122) any part T of the number-series N is finite or 

 simply infinite, according as a greatest number exists or does not exist in T.
239

 

 

In all three of these theorems the concept of the “greatest number” is used to test infinitude. This 

may remind the reader of Bolzano’s discussion and what it had in common with Riemann’s 

work. Bolzano and Riemann tackled infinity with the concepts of limitlessness and endlessness. 

In Dedekind and Peano we see a more rigorous approach.    

 As already mentioned many ideas were co-discovered by Dedekind and Peano. This is 

one place where logic crossed over into set theory. Peano was heavily influenced by Dedekind 

and mentions his debt to him in Principles.” Peano writes in Principles that “The Nature and 

Meaning of Numbers” was great use to him. Syazhkin writes of Dedekind’s influence on Peano 

that: 
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It should be noted that Peano’s axiomatization was to a significant degree inspired by the 

ideas expressed by R. Dedekind in his treatise. In general, Peano was under the strong 

influence of the theory of functions developed by Dedekind.
240

 

 

Peano and Dedekind also had logicism in common, although Dedekind’s philosophical proclivity 

has been a murky matter. This may be because there was not much philosophical activity in the 

set theory strain yet, and this may have changed because of Dedekind. Jose Ferreiros argues that 

Dedekind was a logicist. He points to the quote already mentioned in the introduction to this 

chapter. Ferreiros writes: “Among the earliest logicists we find Gottlob Frege (1848-1925), who 

restricted his logicism to arithmetic, and Dedekind, for whom all of pure mathematics was just 

logic.”
241

 Dedekind’s logicism especially comes across in “The Nature and Meaning of 

Numbers.” In this work Dedekind constructs set theory and then arithmetic on a logical 

foundation. This is the logicist’s program, and we have seen it already in Frege and Peano. 

Dedekind’s move into set theory was caused by his understanding of logic and the concept/set 

relationship. Ferreiros writes: 

 This step toward set language, which Dedekind regarded as “natural,” was difficult 

 and strange for his contemporaries. What made it natural for Dedekind were, 

 undoubtedly, two factors: his familiarity with the traditional logical conceptions, that 

 established the concept/set relation; but above all his confidence in the approach  through 

 set theory to arithmetic and mathematics generally.
242

 

 

Dedekind studied sets and their order because he felt that there was something fundamental in 

sets. He wanted set theory to be a foundational logic for mathematics. Ferreiros writes: 

 Dedekind defines it (infinity) positively; the finite, instead, emerges as that which is 

 not infinite. The reason for this lay in direct connection with Dedekind’s aim of 

 establishing set theory as the  basis for mathematics, and in particular as the basis for  a 

 definition of the natural numbers.
243
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This “set language” defined in a positive way what in mathematics had been taken negatively. He 

did the same with irrationals through cuts. This was a major part of Dedekind’s logicist program.        

Dedekind also engaged with mathematicians outside of set theory and logic. The 

mathematician Bernard Riemann was a contemporary and friend of Dedekind. Dedekind used 

Riemann’s continuous manifold in his definition of continuity, i.e., real numbers, dense sets, etc. 

Ferreiros writes: “Riemann’s influence on Dedekind is highly probable, since they were intimate 

friends from around 1855.”
244

 Riemann was a student at the University of Berlin early in the 

ascendency of Berlin as the new center of mathematics in Europe. Dedekind’s influences 

highlight a period when Berlin was beginning to dominate European mathematics. It was the 

centrality of Berlin and Germany that led to the cross pollination between disparate fields. 

Another, even earlier example of this was Gustav Dirichlet. Dedekind was greatly influenced by 

the mathematician Dirichlet. Reimann, Dedekind, and Dirichlet composed a group of research 

mathematicians that existed at the University of Berlin and Gottingen early in those universities’s 

reign over the mathematical world. Dedekind studied at Berlin shortly and received most of his 

education at Göttingen. Dedekind was the youngest of the three men. He studied under Dirichlet 

at Göttingen and even coauthored a textbook with him. On a sojourn to Berlin Dedekind met 

Reimann. After Dirichlet died Riemann took his chair at Göttingen. Dedekind was still studying 

at Göttingen at this time. He took classes with Riemann. After Dedekind graduated he stayed in 

Göttingen to lecture for a few years and was a colleague of Riemann’s in the department. 

Dedekind cites Dirichlet multiple times in his articles. Riemann was attracted to the Berlin 

Faculty which included Dirichlet and likely took classes with him. Dedekind coauthored a 

textbook on number theory with Dirichlet, Vorlesungen uber Zahlentheorie. This work is cited 

throughout “Continuity and Irrational Numbers” and “The Nature and Meaning of Numbers.” 
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One place where we see the effect of this work is in the definition of a number system like that of 

the real numbers. Dedekind writes: 

(the) completeness and self-contentedness which I have designated in another place 

 as characteristic of a body of numbers and which consists in this that the four 

 fundamental operations are always performable with any two individuals in R, i.e., 

 the result is always an individual of R, the single case of division by the number zero 

 being excepted.
245

  

 

This passage from “Continuity and the Irrational Numbers” is taken almost verbatim from 

Vorlesungen uber Zahlentheorie.
246

 This from the second edition of Vorlesungen uber 

Zahlentheorie, Dedekind states that this passage was written by him. We may safely guess that 

since the book was coauthored by Dirichlet that he was of a similar mind, though it should be 

pointed out that this was the second edition of 1871 whereas Dirichlet had died in 1859. 

Riemann was a lifelong friend and one-time teacher to Dedekind.
247

 As mentioned in the 

Bolzano chapter Riemann advanced the concept of endlessness. Dedekind makes use of this 

same concept in articles 121, 122, and 123. These are quoted above. Dedekind was a close friend 

to Georg Cantor, covered in the next chapter. Thus a chain of influence can be formed from 

Dirichlet to Cantor. 

Conclusion 

 Dedekind set up the achievements that will be outlined in the next chapter. He did this by 

creating a vocabulary for set theory and rigorously discussing concepts in membership and 

ordering. Dedekind’s achievements were heavily influenced by logic. Set theory was to be a 

foundation for mathematics. We saw that Dedekind’s work was shadowed by Frege and Peano. 

Dedekind read Frege and in a larger philosophic context Dedekind was won over to Frege’s 
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logicism. It was here that logicism found a home in set theory. The development of foundational 

mathematics provided an environment in which logic and set theory came together, and in the 

case of Peano and Dedekind, similar results were yielded. It will be seen in the next chapter that 

Georg Cantor worked in this environment and that set theory was born out of this environment.  
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7: Cantor 
 

 I am so much for the actual infinite, that instead of admitting that Nature abhors it, as 

 is vulgarly said, I defend that it affects her everywhere, in order to mark better the 

 perfections of  her Author. And so I believe there is no part of matter which is not, I 

 do not say divisible, but actually divided; and consequently the least particle must be 

 considered as a world full of an infinity of different creatures. 

 

        -Gottfried Wilhelm Leibniz
248

 

         

 

Introduction 

 

 In a sense, Georg Cantor (1845-1918) was a late-comer to the foundational environment 

outlined-in the previous chapter. But it was in his hands that set theory would reach its high mark 

in the nineteenth century. This chapter will argue for two theses: 

1. Cantor was influenced by, and was the culmination of about seventy years of 

development to include Richard Dedekind, Gottlob Frege, Guiseppe Peano, and Bernard 

Bolzano. 

2. Philosophical explanations for the impetus behind set theory are ultimately 

unsatisfactory. Cantor did not belong to any of the three schools of philosophy of 

mathematics that arose during his life. A more accurate statement is to say that Cantor 

was guided by theology not philosophy.     

 

Cantor shared common concerns and ideas with the preceding mathematicians that have been 

discussed.  Cantor used one-to-one correspondence as a criterion for saying that two sets have 

the same number of members. He also cofounded, with Dedekind, a vocabulary of set theory. 

Cantor’s mathematics showed a great concern for the order of members in a set that I will argue 

came in part from Dedekind. Cantor, as well as Dedekind, created a vocabulary for concepts in 

set theory. The figures discussed in previous chapters that led to this high water mark all had 
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attached to them philosophical biases which have been discussed. Cantor’s philosophical views, 

however, are more complex than any other figure in this thesis. I do not believe Cantor was 

logistic. But, there can be no doubt that he was greatly influenced by logicism. The force of 

logicism is felt through his close friendship with Dedekind and his own reading of Frege. Instead 

of a philosophy of mathematics, I will argue that Cantor had a theology of mathematics. In 

making these points I hope also to capture what made Cantor’s discoveries the climax of set 

theory. This is because in understanding these discoveries the reader can grasp the excitement of 

Cantor’s ideas.    

This chapter will begin with a brief discussion of Cantor’s life.
249

 Although in time he 

would be considered one of the greatest mathematicians Germany would ever produce, he was 

born in St. Petersburg. Georg Cantor was born in 1845 to Georg and Maria Cantor. When Cantor 

was a child the family moved to Heidelberg Germany. He attended the University of Berlin in the 

1860’s and finished his dissertation and habilitation in 1867 and 1869 respectively. Berlin by that 

time had become the center for mathematics research in Europe. While at Berlin, Cantor studied 

mostly under three professors: Karl Weierstrauss (1815-1897), Leopold Kronecker (1823-1891), 

and Ernst Kummer (1810-1893). After graduating with his doctorate he became a professor at the 

University of Halle. While his work was still quite distinct from mathematical logic, he was 

influenced by the logicism of thinkers like Frege. In Cantor we can see a mixture of logic and set 

theory. At the end of the nineteenth century investigations into systems of logic and infinity were 

increasingly coming into contact with each other. Cantor’s work in set theory began in 1874 and 

continued in journal articles through the 1890’s. The work I will be drawing on is Contributions 

to the Founding of the Theory of Transfinite Numbers, a work written in the 1890’s. This work 

was originally published as two papers. These papers were the last significant work Cantor 
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would do. Cantor died in 1918 amongst ever more frequent nervous breakdowns. This chapter 

will outline the accomplishments of Cantor in the field of foundational mathematics and connect 

him back to the previous mathematicians discussed.  

The traditional approach to this history has neglected Cantor’s predecessors. This can be 

seen in Jose Ferreiros’ article, “Traditional Logic and the Early History of Sets, 1854-1908.” In 

this work Ferreiros does discuss two previous mathematicians heavily; these are Bernhard 

Riemann and Richard Dedekind. He also mentions Frege and Bolzano, though he does not place 

the importance on them that I do. Ferreiros makes little mention of Peano and I have shown in at 

least one place where their investigations met one another. One of the aims of this chapter, as 

stated above, is to include Peano, Bolzano, and Frege in the story of the founding of set theory. 

In Cantor we see the finished product of the set theoretical strain. Cantor was engaging with both 

Bolzano and Dedekind. He used concepts that were central to Frege’s understanding of sets. This 

finished product was naïve set theory. The paradoxes of naïve set theory would bring about an 

axiomatic treatment in the twentieth century. The genealogy of this can be considered to have 

taken off from Cantor. That is, the corpus of Cantor’s set theory is a convenient break for our 

investigation. 

Influences on Cantor  

Cantor’s accomplishments can be tied back to several of the mathematicians already 

discussed. Cantor was part of a group of students gathered around Karl Weierstrass (1815-1897) 

at the University of Berlin. They rediscovered the work of Bernard Bolzano. Weierstrass was 

Cantor’s advisor. He held the position as the great old man of German mathematics. As 

mentioned above, because of Bolzano’s troubles with the Czech authorities he was dismissed 

from academia. This led to Bolzano being unknown in mathematics for years. When it was 
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finally rediscovered Bolzano’s work had a great influence on Cantor. A large part of this 

influence probably came from Cantor’s time with Weierstrass at the University of Berlin. 

Bolzano’s influence can be seen especially in Cantor’s founding proofs of set theory. 

Cantor’s work on set theory revolved around three proofs that he discovered in the 

1870’s. These dealt with the one-to-one correspondence between types of numbers. One-to-one 

correspondence was stated in Bernard Bolzano’s Holomerism
250

 and advanced further by 

Richard Dedekind. Cantor showed that the natural numbers can be put into a one-to-one 

correspondence with the rational numbers and also with the algebraic numbers. He also showed, 

surprisingly, that the natural numbers cannot be put into a one-to-one correspondence with the 

real numbers. This investigation into the natural numbers occurred chronologically parallel to 

Dedekind’s, Frege’s, and Peano’s investigations into the natural and real numbers. Cantor’s 

investigation, however, came from a different tradition than Frege’s and Peano’s. Cantor was in a 

line of mathematical research that included Bolzano and Dedekind.  

 Cantor’s work was not isolated from the foundational environment discussed in the last 

chapter. He and Richard Dedekind had a long correspondence. Dedekind also carried on a 

correspondence with Bernhard Riemann (1826-1866) who was mentioned above. Dirichlet, who 

was also mentioned above as being important to Dedekind, was Riemann’s dissertation advisor. 

Riemann, Dirichlet, and Dedekind were at Göttingen together. Thus, Cantor was the tail end of a 

chain of four mathematicians. This constitutes a second half of the great environment for 

mathematical research. Instead of reaching across both logical and set theory strains, these 

mathematicians were solely in the set theory tradition. This half of foundational mathematics was 

connected through Dedekind to the rest of the intellectual environment mentioned in the previous 
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chapter. It is worth pointing out that Peano briefly mentions Cantor in Principles, writing that his 

section on “Systems of Quantities” pertains “to the theory of those entities which Professor 

Cantor has called Punkmenge (sets of points).”
251

 Ferrieros argues Cantor was influenced by 

Riemann. He considered sets from the point of view of sets of points. Riemann considered point-

sets as an abstract way of investigating non-Euclidean spaces. He called these sets “manifolds.” 

Cantor would even occasionally use this term as a substitute for set.
252

Cantor’s set theory is the 

culmination of a thread starting from Dedekind’s concerns over infinity. This thread hits full 

force with Cantor. Dedekind’s influence can be seen in Cantor’s book Contributions to the 

Founding of the Theory of Transfinite Numbers. Cantor writes: “Thus ω is a number of the 

second number-class, and indeed the least. For if g is any ordinal number less than w, it must be 

the type of a segment of F0.”
253

 He also writes: “The second number class has a least number ω 

=lim v.”
254

 Here we can see something like a Dedekind gap between the finite natural numbers 

which tend towards v and the least member of 0א, ω. This is not to say that Cantor got this idea 

from Dedekind, but rather that although their ideas may seem disparate they are not. On a deeper 

level their ideas are related. Set theory arose from Cantor’s work in trigonometry, particularly in 

his consideration of point sets. These were sets of points which were important in Riemannian 

geometry and led Bernhard Riemann into a consideration of sets himself. 

Cantor’s Discoveries 

 Cantor’s three proofs were spurred by the question: how do we determine that two groups 

of things have the same number of members?
255

 This question was answered in an ultimately 
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unsatisfactory way by Bolzano, Cantor’s handling of it was contemporary with Frege’s and 

Dedekind’s. The answer to this question was to use one-to-one correspondence to say that two 

sets have the same number of members. Cantor applied this criterion to infinite sets. He did this 

by finding ways to put the two sets into one-to-one correspondence, usually by a sort of 

instructions. If this was not possible Cantor would show how one-to-one correspondence 

between two sets could always be broken, again through a set of instructions. His founding of set 

theory centered on the discovery of three proofs in particular. The first proofs came in 1874
256

. 

These include the proof of one-to-one correspondence between the natural numbers and the 

algebraic numbers, and the proof that the real numbers cannot be put into a one-to-one 

correspondence with the natural numbers. This proof demonstrated that there were at least two 

degrees of infinity. If the real numbers were infinite and yet were a quantity not equal to the 

natural numbers, then there had to be at least two quantities of infinity. What Cantor showed is 

that if mathematicians took one-to-one correspondence as the definition for two sets having the 

same number of members then they would have to accept the unintuitive idea of two levels of 

infinity. This was true even for Bolzano’s understanding of infinity. Cantor’s third proof came in 

1878,
257

 and it showed that the rational numbers could be put into a one-to-one correspondence 

with the natural numbers. In all three of these proofs one-to-one correspondence plays a central 

role. This is exactly the distinction with previous conceptions of infinity. Earlier thinkers were of 

two opinions. Some believed that there was one kind of infinity, the infinity of natural numbers. 

Others, like Bolzano, accepted that there were different quantities of infinity, but they did not 

determine these by one-to-one correspondence. Bolzano held that, for example, the even natural 

numbers were of a lower infinity than the natural numbers. What Cantor realized was that the 
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natural numbers and the even natural numbers could be put into a one-to-one correspondence, 

therefore they were equipotent. These proofs form the center of the corpus of naïve set theory. 

They achieved this by utilizing one-to-one correspondence.
258

      

 From the observation that there are two degrees of infinity Cantor created a way to count 

and calculate these infinities. Cantor founded the transfinite ordinal numbers. These are similar 

to the finite ordinal numbers: first, second, third, etc. They represent a place in the order of 

natural numbers. The sixth car is different from six cars. The former states that a car appears 

some place in an order, say the sixth car to pass a sign on the highway. The latter merely states 

that a total of six cars passed the sign. It says nothing about in what order they passed the sign. 

The transfinite ordinals begin with ω, the Greek letter omega. He states that ω is the limit that the 

natural numbers tend toward. That is, the natural numbers get closer, arbitrarily closer, to ω 

without ever reaching it. The historian of mathematics Phillip Johnson writes: “Cantor discussed 

the sense in which ω may be regarded as the limit to which the variable finite whole number n 

tends.”
259

 This idea of variable whole numbers is covered below; it is an important distinction for 

Cantor. This concept provides a better solution to the first paradox that we saw Bolzano treated. 

Ordinal numbers represent an abstraction from the objects they order. They give both order and 

number. A bucket of apples is abstracted to one degree when they are ordered, for instance the 

order in which they are picked out of the bucket. We go from saying apple, apple, apple, apple, 

apple, apple; to saying first, second, third, fourth, fifth, sixth. This constitutes an abstraction. 

Cantor even symbolized this as an M with one line over it. The line represents a single 

abstraction. Cantor writes of this:   
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 every simply ordered aggregate M has a definite ordinal type M’; this type is the  general 

 concept which results from M if we abstract from the nature of its elements while 

 retaining their order of precedence, so that out of them proceed units which stand in a 

 definite relation of precedence to one another.
260261

 

 

 After the natural numbers are passed through the next number is ω the next after that is ω + 1. 

After each of the natural numbers is added to omega the next transfinite ordinal number is ω x 2. 

This operation can be carried out ad infinitum. ω is the “order type” of the natural numbers. An 

order type is the way a set is ordered, how one ascends through its members. Later in this chapter 

Cantor’s concept of “similarity” will be discussed.
262

 If two sets are similar then they have the 

same order type. The rational numbers and natural numbers are equal quantities, but they are not 

of the same order type. These ordinal numbers comprise a whole new arithmetic, separate from 

natural number arithmetic. It is worth going into this move that Cantor makes.  

 The transfinite ordinals and their arithmetic present one the most important moves that 

Cantor made in his system. To understand where they came from we should begin by setting 

aside transfinite ordinals and instead consider the following riddle. We have seen in previous 

chapters that the natural numbers can be placed into a one-to-one correspondence with the even 

natural numbers. This is accomplished with the function 2n. That is, we can get any even number 

by applying the function 2n to a unique natural number. For instance, the even number 467378 

can be reached by applying 2n to the natural number 233689. Since one-to-one correspondence 

is the criterion for two sets having the same number of members, we can say that N (natural 

numbers)=E (even natural numbers). We can do the same thing with the odd natural numbers. We 

achieve this with the function 2n-1 (assuming 0 is not a natural number). We can reach the odd 

                                                 
260

 Cantor, Contributions, 151-152 . 
261

 I am writing M’ in place of Cantor’s M with a line over it, which what Cantor writes in Contributions. 
262

 I will go ahead and share Cantor’s definition of similarity here: We call two ordered aggregates M and N 

“similar” (ahnlich) if they can be put into a biunivocal correspondence with one another in such a manner that, if m1  

and m2 are any two elements of M and n1 and n2 the corresponding elements of N, then the relation of rank of m1 to 

m2 in M is the same as that of  n1 to n2 in N. 



  123 

 

natural number 849 by multiplying 425 by two and subtracting 1. As before, we are able to say 

N=O (odd natural numbers). Now, how large is the set resulting from the addition of E to O? 

They are disjoint. Intuition tells that the addition of E to O is just the natural numbers. That is, E 

+ O = N. However, by arithmetic, since N=E and N=O, E + O should equal 2N. That is, E added 

to O should result in a set having twice as many members as the natural numbers. What we are 

seeing here is that arithmetic is breaking down and leading to absurd results such as E + O = 2N. 

Cantor had to deal with this. To do this he invented the transfinite ordinal numbers and their 

arithmetic. E = ω and O = ω, so E + O = ω + ω which equals N which equals ω. So in our new 

arithmetic (TOA) ω + ω = ω.
263

  

But Cantor’s move to TOA should not be viewed as something he willed into existence. 

Cantor writes of the ordinal numbers: 

 I was logically forced, almost against my will, because in opposition to traditions 

 which had become valued by me in the course of scientific researches extending over 

 many years, to the thought of considering the infinitely great, not merely in the form 

 of the unlimitedly increasing, and in the form, closely connected with this, of 

 convergent infinite series, but also to fix it mathematically by numbers in the definite 

 form of a “complete infinite.”
264

 

 

The reader may sense in this passage that Cantor did not set out to found a transfinite 

arithmetic.
265

 It is important to recognize that Cantor did not construct his proofs as a way to 

advocate a philosophical position, and we can imagine his being surprised by the firestorm it 
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cause. This fact may have bearing on events in his personal life that will be covered later. The 

role of mathematical rebel was forced upon Cantor by the inability to correspond the natural 

numbers and the real numbers. If these two number systems were both infinite but could not be 

put into one-to-one correspondence then by definition there had to be multiple levels of infinity. 

Cantor went still farther in positing an arithmetic with the ordinal numbers. While Bolzano was 

correct that an infinite set is one with no last term, Cantor’s accomplishment is to speak of the 

first number after all the natural numbers. There is some limit that the natural numbers tend 

toward and Cantor instructs us to call it ω. In a previous chapter we saw that Bolzano and 

Riemann had different views of infinity. The distinction was made between infinity as endless 

and infinity as limitless. As I have previously mentioned, Cantor states that the infinity of natural 

numbers does have a limit, omega. In this sense it is like the equator of the earth. We can walk 

forever over the face of the Earth, nonetheless we are confined. Cantor viewed this as an 

uninteresting kind of infinity. The term “ordinal” suggests that order is important somehow. 

Ordinal numbers do not just tell us the number of things considered but suggest an order also. 

Omega is the ordinal after all natural numbers. We can think of omega as the ω
th

 number. Cantor 

calls the set of transfinite ordinals the second number class. Cantor posits another kind of 

transfinite number, the transfinite cardinal number.  

Cantor sets out to prove that the cardinal number of the transfinite ordinals does not equal 

 It was mentioned earlier that Cantor’s three proofs established that there are at least two .0א

levels of infinity. Cantor listed these levels off with cardinal numbers. A cardinal number tells the 

number of members in a set. Whereas the ordinal numbers represented one level of abstraction 

the cardinal numbers represented two levels of abstraction. As with our earlier example with 

apples, not only is the nature of the apples removed but also their order is removed and there are 
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just six apples. The cardinal numbers of finite sets are just the natural numbers 1 2 3 4 … The 

cardinal numbers for the first two levels of infinity are symbolized as 0א for the natural numbers 

and 1א for the continuum. The cardinal numbers are different from Bolzano’s degrees of infinity. 

In Bolzano’s system the set of natural numbers was larger than the set of even natural numbers.  

The proof that the set of transfinite ordinal numbers does not have cardinality 0א runs thus.
266

 So 

it must be a member of a next higher class of numbers. This is very likely the sort of argument 

that Leopold Kronecker would attack in his debate with Cantor. It is a reductio argument
267

 and 

this is the sort of reasoning that intuitionists did not accept. Now let us discuss this new cardinal 

number that constitutes the totality of the transfinite ordinal numbers.  

 With his three proofs and the above proof Cantor shows that the real numbers form a 

more numerous degree of infinity and the transfinite ordinals form a higher degree of infinity. 

The real number system had increased in importance in mathematics in the nineteenth century. 

Still, little was known about what the real numbers were. In a previous chapter we saw that 

Dedekind went a long way in remedying this deficit. If, as Cantor showed, there were more real 

numbers than natural numbers this fact would seem essential for understanding the real numbers. 

As mentioned above the natural numbers could not be placed into a one-to-one correspondence 

with the real numbers. This infinity higher than 0א was named the continuum. Cantor spent much 

of his career trying to prove the Continuum Hypothesis. This states that the next transfinite 

cardinal number after 0א is the number of the continuum. This is the infinity of the transfinite 

ordinal numbers mentioned earlier and the real numbers.
268

 There, of course, was recognition of 

                                                 
266

 This proof can be found in full in the appendix. 
267

 This sort of argument is also called “indirect proof”, the way it works is that the negation of what you are trying 

to prove is assumed. At the end of a line of reasoning from this assumption a contradiction is reached. It is then 

shown that the negation of what we were trying to prove most itself be false. Therefore what we were trying to 

prove has been proven.   
268

 This is one of the early proofs Cantor wrote and it is contained in the appendix.  



  126 

 

the continuum before Cantor; one recalls the continuum paradox discussed in the Bolzano 

chapter. In Cantor’s system both sets would have the same cardinal number, 0א. Phillip Jourdain 

writes that Cantor dismissed Bolzano’s continuum as covering only part of what a continuum is. 

Jourdain writes: 

 Bolzano’s (1851) definition of a continuum is certainly not correct, which is also 

 possessed by aggregates which arise from Gn when any isolated aggregate is removed 

 from it, and also in those consisting of many separated continua.
269

 

 

It will be remembered that Bolzano defined the continuum in terms of neighborhoods around 

points. Cantor’s point is that this is insufficient as a definition of the continuum. By this 

definition, we could say that the real numbers minus the natural numbers is still a continuum. 

Since Bolzano’s definition would still hold.
270

 But this is not what the mathematician wants from 

the continuum. This would cause a Dedekind gap and that is just what we cannot have in the 

continuum. Cantor’s work in real numbers was an engagement with Dedekind and Bolzano. 

Dedekind was in close correspondence with Cantor, and Cantor no doubt knew Dedekind’s work 

intimately. Bolzano was familiar to Cantor because Cantor was a member of the group of 

students around Karl Weierstrass who largely rediscovered Bolzano’s work. Jourdain here states 

just a stronger connection between Cantor, Dedekind, and Bolzano. Cantor’s greatest 

contribution to the understanding of the real numbers was the continuum hypothesis. 

 Cantor did more than construct mathematical proofs like those above, or count off 

infinities. He, along with Dedekind, created a technical vocabulary for talking about sets. This is 

just what Bolzano did not have. Cantor uses the concept of similarity. Similarity is a 

characteristic that holds between two sets. Cantor writes: 
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 We call two ordered aggregates M and N “similar” (ahnlich) if they can be put into a 

 biunivocal correspondence with one another in such a manner that, if m1  and m2 are 

 any two elements of M and n1 and n2 the corresponding elements of N, then the relation 

 of rank of m1 to m2 in M is the same as that of  n1 to n2 in N.
271

 

 

Two sets are similar if they can be matched in a one-to-one correspondence and if the order is the 

same in each set. The set of natural numbers and the set of even natural numbers are similar. A 

one-to-one correspondence can be drawn between the two sets and if we take two pairs, say 

{1,2} and {7,14}, one is the predecessor of seven and two is the predecessor of fourteen. The set 

of natural numbers and the set of rational numbers are not similar, in the pairs {1,1} and {3, ½} 

one is a predecessor of three but one is a successor of ½. In fact we could not match the natural 

numbers with the rational numbers and keep the relation of rank. What is fundamental, which is 

showing through, is that there is no fraction with which we can generate all the rational numbers 

from the natural numbers. What is more fundamental than this even is that there is no least 

rational number. Suppose we tried to pair the natural numbers to the rational numbers and wrote: 

(1,1/5)(2,1/4)(3,1/3)(4,1/2)(5,1/1). So far the two sets seem to be similar. But we can always say: 

Pair the next natural number, 6, with a rational number less than 1/5. Once this is done the 

similarity is destroyed. For any pairing like this we can add 1 to the denominator and pair that 

rational number with the next natural number and thus destroy similarity. 

 Cantor dove deeper into the order of sets with concepts like similarity. He, like Dedekind, 

was concerned with ordering within a set. If Cantor had never developed his three proofs above 

it is likely he would have made a name for himself just for his work on ordering. There are two 

kinds of ordering for Cantor, simply ordered and well ordered. Cantor defined a simply ordered 

set as: 

 We call an aggregate M “simply ordered” if a definite “order of precedence” 

 (Rangordnung) rules over its elements m, so that, of every two elements m1 and m2, 
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 one takes the “lower” and the other the “higher” rank, and so that, if of three 

 elements m1, m2, and m3, m1, say, is of lower rank than m2, and m2 is of a lower rank 

 than m3, then m1 is of lower rank than m3.
272

 

 

Here Cantor states that a set is simply ordered if for any two members that are chosen one will 

precede or succeed the other, and, if for any three members that are chosen, say a, b, and c; if a 

precedes b and b precedes c then a precedes c. The first requirement sounds a lot like Peano’s 

twenty-third postulate of subtraction.
273

 Peano is identifying the natural number system as simply 

ordered. Peano, a logician is using a different language and tradition to talk about ideas that are 

very close to Cantor’s. If m1 = m2 then we are not dealing with two elements as stipulated in the 

above quote. The second requirement of simple order is close to Peano’s fourth axiom, it is often 

referred to as the transitive property, it states: If a, b, and c are natural numbers then, if a equals b 

and b equals c then we can say a  equals c. 
274

 Cantor is requiring the transitive property from 

simple order. There is another kind of order and Cantor calls this well ordering. Well ordering is 

defined by Cantor as follows: 

 We call a simply ordered aggregate F “well-ordered” if its elements f ascend in a 

 definite succession from a lowest f1 in such a way that: 

4. There is in F an element f1 which is lowest in rank. 

5. If F’ is any part of F and if F has one or many elements of higher rank than all  

 elements of F’; then there is an element f’ of F which follows immediately 

 after the totality F’, so that no elements in rank between f’ and F’ occur in F.
275

 

   

A well-ordered set is one in which there is a first member, and such that any subset contains a 

first member.   

 Cantor did not just posit the above concepts; he also made use of them. The following 

proof is central to Cantor’s concept of a well ordered set. In Contributions Cantor writes: 
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 A. Every part F1 of a well-ordered aggregate F has a lowest element. 

 Proof.- If the lowest element f1 of F belongs to F1, then it is also the lowest element 

 of F1. In the other case, let F’ be the totality of all elements of F which have a lower 

 rank than all elements F1, then, for this reason, no element of F lies between F’ and 

 F1. Thus, if f’ follows next after F’, then it belongs necessarily to F and here takes the 

 lowest rank.
276

 

 

We can think of this proof in the following illustration: 

 

         

 

 

 

 

 

This illustration shows the first state of affairs in which f1 is the least member of F and a member 

of a subset F1 of F. And so f1 must be the least member of F1. Now let us look at the second state 

of affairs: 

 

Cantor directs us to consider the situation where f1 is not a member of F1, as in the above 

example. We imagine the set of all members of F that are less than all members of F1. We denote 

this set above by F’. It is clear to see that there is no member between F’ and F
1
. In this case the 

next member in rank after F’ must be the lowest member of F1. This proof really comes out of 
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part two of Cantor’s definition of well-ordered. This consideration is close to the Dedekind cut 

seen in the previous chapter. Dedekind’s idea of a cut of the real number system relied on a 

similar partition of a set. Both Cantor and Dedekind were concerned with what happens when we 

investigate the members to either side of the partition. Is there such a member that we can 

identify if so or if not what does this say about the partition and the set?     

As novel as Cantor’s transfinite mathematics was, it dealt with fundamental questions and 

attempts that we saw in the chapter on Bolzano. Both Bolzano and Cantor asked how infinite sets 

were to be compared. As seen in a previous chapter Bolzano believed that the natural numbers 

were more numerous than the even natural numbers. Cantor on the other hand saw no difference 

between the size of the set of natural numbers and the size of the set of even natural numbers. 

Cantor’s investigation of infinity took up where Bolzano’s left off, except Cantor took one-to-

one correspondence to its logical end. Cantor had to define the terms infinite and set. On the 

topic of infinity, Jourdain writes: 

 The mathematical infinite, says Cantor, appears in two forms: Firstly, as an improper 

 infinite, a magnitude which either increases above all limits or decreases to an arbitrary 

 smallness, but always remains finite; so that it may be called a variable finite. Secondly, 

 as a definite, a proper infinite, represented by certain conceptions in geometry, and, in the 

 theory of functions, by the point infinity of the complex plane.
277

 

 

Cantor divides infinity into two kinds. The first kind is what Dedekind called simply infinite. 

Bolzano discussed paradoxes dealing with the infinite and the infinitesimal. Cantor disregarded 

the infinitesimal. This infinity more closely reflects what Bolzano called infinity. This kind of 

infinity includes the infinitude of natural numbers tending toward ω. It does not include ω. This 

infinity increases past all limits because any limit posed in the form of a natural number can be 

passed by simply adding one to it. However, by the term improper it can be guessed that Cantor 

considers this infinity to be uninteresting. Because we can always name a larger finite natural 
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number this infinity is really just a variable finitude. The least transfinite ordinal omega is the 

least of the second number-class. It is these numbers that Cantor wants to investigate. Cantor 

defines a set as: 

By a manifold or aggregate I understand generally any multiplicity which can be thought 

of as one, that is to say, any totality of definite elements which can be bound up into a 

whole by means of a law.
278

 

 

Here we see a definition of set that uses Frege’s idea of the concept/set relation. It is the law or 

concept for Cantor that bounds the aggregate.  

Cantor’s Philosophy  

The second thesis of this paper is pertains to Cantor’s philosophy of mathematics. As 

mentioned above and throughout this chapter, Cantor was greatly influenced by Dedekind and 

there is analogy between the works of the two mathematicians. In the preceding chapter it was 

shown that Dedekind was logistic. Cantor, however, is a more complex matter. His set theory 

became a stage for the budding schools in philosophy of mathematics. This came out of the 

philosophical significance of set theory and the now famous debate with Leopold Kronecker 

(1823-1891). Kronecker was a professor at the University of Berlin while Cantor was a student 

there. The two were not strangers.  Kronecker did not accept the methods which Cantor 

employed because he felt that they were spurious. This was because he held to a restrictive view 

on what can be said in mathematics. Kronecker held an exalted position in mathematics of the 

day. Cantor believed that Kronecker was using his position to block publication of Cantor’s 

work. It is even suggested that it was this debate that exacerbated Cantor’s mental health issues 

throughout his life. Kronecker is today considered to be a proto-intuitionist. It was he who 

famously said: “ The integers were made by God, but everything else is the work of man.”
279
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Intuitionism can be taken as the view that legitimate mathematics is that which appears to the 

categories of human experience or can be directly derived from those categories. Intuitionism 

would later gain great prominence under its most famous proponent L.E.J Brouwer (1881-1966) 

Cantor used methods that Kronecker considered suspect. One such method is the use of an 

indirect proof which we saw above with Cantor’s proof that the power of the transfinite ordinals 

is not equal to 0א.  This debate brings to light the question of what Cantor’s philosophical 

position actually was. Kronecker’s objections would make Cantor nervous of stating his position 

too strongly, or stating the more novel parts of his theory in print. This was because of 

Kronecker’s powerful position in the mathematical community at the time. What was 

fundamental to Kronecker’s objections is that the proto-intuitionist position accepted, in a 

Kantian sense, only mathematical entities that made themselves apparent to categories.
280

 This 

position was attacked by Frege in The Foundations of Arithmetic. The transfinite cardinal 

numbers certainly did not meet these criteria. This would build up to the last point in the history 

of mathematics where philosophy would throw its weight around in the arena of mathematics. 

Ferreiros makes the point that: 

Perhaps it is no coincidence that set theory was born in the land of rationalism, and 

precisely during the 19th century, when a close relation still reigned between scientists 

and philosophers.
281

 

 

This history is outside the scope of the work. Cantor had to operate in a philosophically charged 

environment and it is important to consider his own philosophical position. Here, it must be 

admitted, that there is not much evidence for a logistic interpretation of Cantor. In fact, Jourdain 
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states that in 1882 Cantor supported the “formalist theory of number.”
282

 This does not mean that 

Cantor was unaffected by logicism. Logicism was a view that held influence over the 

mathematicians whose work Cantor built his system upon. 

 As mentioned above, it is difficult to tell what Cantor’s philosophical views were. He was 

interested in philosophy. But he was not particularly interested in the philosophy of mathematics. 

As stated above Jourdain ascribed formalism to Cantor at least when it came to defining 

numbers. Jourdain also attributes psychologism to Cantor, writing that Cantor: “defined “cardinal 

number” and “ordinal type” as general concepts which arise by means of our mental activity, that 

is to say, as psychological entities.”
283

 It should be mentioned here that Jourdain’s opinions on 

these matters are valuable because, aside from producing the first translations into English of 

some of Cantor’s works, he had a long correspondence with Cantor. However, in this period it is 

difficult to tell the difference between what might have been proto-formalism and what might 

have been logicism. There are three reasons for this. First, formalism was the last of the school of 

philosophy of mathematics to coalesce out of the nineteenth century. Formalism was in a nascent 

state at this time. Second, formalism constructed axiom systems much as the logicism did. The 

difference was what ontological state these axioms held. Were they logical necessities or were 

they merely chosen depending on what the mathematician wanted to accomplish? Opinions on 

these matters rarely found their way into mathematics texts. Finally, it is difficult to tell a proto-

formalism from logicism because in these years it was really intuitionism that was the reactive 

agent in the philosophy of mathematics. This was seen above in Frege’s The Foundations of 

Arithmetic and in Cantor’s own debate with Leopold Kronecker. Intuitionism was the school of 

thought that the rest of the philosophy of mathematics, proto-formalism or logicism, had to 
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contend with. Rarely did the latter two schools do battle. Cantor’s philosophy can be better 

explained by not appealing to any of these schools.       

  The issue of Cantor’s philosophy of mathematics may be better explained in another 

way. In a discussion of Cantor’s philosophical stance in mathematics it is useful to consider 

Cantor’s personality. Historians of mathematics traditionally have not spent much time 

considering the personality or personal lives of mathematicians. The historian of mathematics 

Joseph Dauben writes: 

Historians of mathematics are generally accustomed to discussing ideas rather than 

individuals. A mathematician’s personal life and his mathematics are frequently regarded 

as wholly separate, the former providing human interest while the latter comprises the 

heart of the matter.
284

 

 

The view of historians of mathematics that Dauben gives us is one that I must admit to being 

sympathetic to. Dauben devotes much space to discussing Cantor’s recurring nervous 

breakdowns. I do not wish to bat about Cantor’s mental health in this work. Nonetheless, there is 

one area of Cantor’s life that can illuminate the complex problem of what his philosophy of 

mathematics consisted in, if anything. I chose Leibniz’s quote to start this chapter. It was quoted 

by both Bolzano and Cantor. Thus, this quote ties Cantor back to Bolzano who was the first 

figure in the set theoretical strain that we discussed. Leibniz’s quote also points to a theological 

impetus for both Bolzano and Cantor. Thus, Leibniz’s quote acts as bookends to the 

consideration of infinity from Bolzano to Cantor. Leibniz, Cantor, and Bolzano share a 

mathematical reverence for the “Author” of nature. This reverence will play a large role in 

Cantor’s work. Cantor was the eldest child of Georg and Maria Cantor. His childhood was one of 

strict Lutheran upbringing. This was a pervasive theme in his life that his father in particular had 
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bequeathed to him. Cantor’s philosophical view of mathematics is difficult to tease out because 

his motivation was not philosophical but rather theological. He was motivated by a deep 

religious devotion. Imagine the “Author” that Leibniz spoke of in the quote at the beginning of 

this chapter. That passage was quoted by both Cantor and Bolzano. Dauben writes: “There can be 

no mistake about Cantor’s identification of his mathematics with some greater absolute unity in 

God.”
285

 This may seem a poor substitute for logicism or intuitionism. But what Frege got from 

logicism was an impetus for foundational mathematics. This is just what religion provided 

Cantor. I think there is little reason to treat Cantor’s religious views as inferior to logicism. This 

is a point of departure from the preceding figures we have discussed. Cantor’s work built upon 

investigations that were largely guided by logicism, but he cannot not be counted as logistic.           

Conclusion 

 In the preceding pages of this chapter we have seen that Georg Cantor was the climax of 

developments throughout the nineteenth century. He is responsible for five accomplishments. 

First, He used the one-to-one correspondence of Dedekind, Bolzano, and De Morgan more 

extensively and to greater effect than ever it had been used before. Second, he added to the 

vocabulary of sets that Dedekind had founded. Cantor’s contributions were the concepts of well 

ordering, simple ordering, transfinite ordinals and cardinals, and similarity. Third, he fought 

against philosophical opinions of the day to publish his findings. Cantor’s resoluteness provided 

incubation for the ideas of set theory. He was a wet nurse to set theory. The late nineteenth 

century was dangerous territory for new mathematical ideas. Mathematics in this period was 

more political than it had ever been. Kronecker held a powerful position in this environment and 

he turned his power against set theory, a lesser man than Cantor would have folded. Fourth, 
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Cantor developed ideas of ordering that were more sophisticated than those of Dedekind or 

Bolzano. This would be of importance going further as mathematicians of the early twentieth 

century probed the well ordering of sets. Finally, He used these new concepts to construct the 

first generation of proofs of set theory. Among these were the three proofs of 1874 and 1878, and 

the well ordering proof mentioned above. 
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Conclusion  
 

 The prevailing history tells of the confluence of set theory and logic occurring in the early 

twentieth century. This treatise, though, has shown that mathematicians and logicians both were 

influenced by work and philosophical attitudes in the other tradition throughout much of the 

nineteenth century. This oversight may be due to the lack of shared language between the 

philosopher and the mathematician. The reader should recall Styazhkin’s comment on the 

reception of Frege’s Begriffschrift or Norbert Weiner’s letter to Bertrand Russell. However, the 

foundational work of Frege and Peano was mirrored by Dedekind and Cantor. As shown above 

both Dedekind and Cantor read Frege. Both Frege and Peano were as concerned with building 

number systems as Dedekind and Cantor were. All four were concerned with how number 

systems and sets were constructed. These concerns stemmed from a shared philosophical 

viewpoint. With Cantor the philosophical viewpoint becomes nuanced so that he at least cannot, I 

think, rightly be counted as an outright logicist. Nonetheless, logicism was all around him.  

 Prior to these four thinkers there was a similar, if inchoate, situation. George Boole broke 

with the logicians discussed in the first chapter. Looking forward, he had an influence upon the 

work of Peano. Bernard Bolzano’s work was the beginning of a modern treatment of infinity. He 

was also a crossover to logic with his magnum opus the Wissenschaftslehre. One-to-one 

correspondence has played a role in this narrative; for example, Frege’s MUC, Bolzano’s 

holomerism, Cantor’s proofs, and Dedekind’s definition of infinity. One-to-one correspondence 

linked the philosophy minded creators of mathematical logic with the founders of set theory. One 
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recalls De Morgan’s early description of one-to-one correspondence. The investigations of 

logicians came closer to set theory as the nineteenth century wore on; this is especially true of 

Frege and Peano. Peano, late in his career, wrote on set theory. 

 The Stanford Encyclopedia of Philosophy entry mentioned above states another aspect of 

the early history of set theory and that is “its role as a fundamental language and repository of the 

basic principles of modern mathematics.” (Stanford Encyclopedia of Philosophy, s.v. “The Early 

Development of Set Theory”) It was logicism that was the philosophical under pinning of the 

search for such a “fundamental language.” The historian of mathematics Howard Eves writes of 

logicism: 

 We have seen how these foundations were established in the real number system and 

 then how they were pushed back from the real number system to the natural number 

 system, and thence into set theory. Since the theory of classes is an essential part of 

 logic, the idea of reducing mathematics to logic certainly suggests itself.
286

 

 

We have seen that the logic of Peano and Frege was meant to be a foundation for science. The 

condition of logic in the decades before the publication of The Mathematical Analysis of Logic 

was explained by the German philosopher G.W.F. Hegel when he wrote: 

 In order that these dead bones of logic may be revivified by mind, and endowed with 

 content and coherence, its method must be that by means of which alone logic is  capable 

 of becoming a pure science. In the present condition of logic, hardly a suspicion of 

 scientific Method is to be recognized.
287

 

 

Logic as a pure science is what Boole, Frege, and Peano offered. It may be difficult for the 

modern reader, living in a post-Gödel world, to see why these men were so excited at this 

prospect. What excited them was the prospect of deriving new scientific knowledge simply from 

a new combination of signs. 
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 J.N. Crossely includes the following diagram in his book What is Mathematical Logic? 

Although Crossely is not an academic historian and his book is not scholarly, his illustration 

represents what has been the thinking on this history:
288

 

 

I have inserted a line to indicate the point of greatest pre-1900 cross-pollination.     

 The reputation of these thinkers has increased since their lives. At the end of the 

nineteenth century W.W. Rouse Ball wrote A Short Account of the History of Mathematics 

(1888). Ball’s book was a survey of the history of mathematics. What strikes the modern day 

reader is that although it was written after the work in logic and set theory covered here, there is 

little mention of any of the mathematicians here concerned. Raymond points this out:  

Take for instance the histories of Ball and  Cajori, which were written shortly before 

1900. In Ball’s first edition (1888) there is no mention of “logic”; in the fourth edition 

(1908) there is a remark concerning George Boole to the effect that he “was one of the 

creators of symbolic or mathematical logic.” The index of this book contains no citation 

to any other reference to logic. Cajori’s first edition (1893) contains four remarks of a 

similarly incidental nature concerning logic.
289
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Wilder then writes: “Compare these books with Bell’s Development of Mathematics, published in 

1940. Here at least 25 pages are devoted to “mathematical logic.”
290

 This is likely due to the split 

between mathematics and logic that was still existent in Ball’s and Cajori’s time. But more than 

this, it is likely due to the novelty and still hot mathematical debate over these ideas. Also, Ball’s 

work was A Short Account of the History of Mathematics, and the work of Peano, Frege, 

Dedekind, and Cantor were not history yet. Whatever the case may be, the subject is no longer 

ignored.        

 My criticism of the historiography has been that it has, to too great a degree, treated the 

logical as isolated from the set theoretical in the nineteenth century. The pathologies of this have 

been two; first, that histories of logic and set theory have ignored each other; second, that 

histories of logic and set theory have tended to work up to or up from Cantor and Russell. In this 

work I have made heavy use of Jean Van Heijenoort’s From Frege to Gödel. The most Van 

Heijenoort gives us of Cantor and Dedekind are letters. There are no papers from either author. It 

is not until paradoxes in set theory arose and the axiomatic treatment of sets that Heijenoort 

seems to offer his reader much material in set theory. But he does eventually offer it, which 

suggests that he feels that the investigation into the infinite be included in a volume on logic. 

From Frege to Gödel does include Begriffschrift and Principles of Arithmetic. But, as I have 

shown in the chapter on Dedekind, Frege and Peano make up only part of the special 

environment in the late nineteenth century. Heijenoort provides precious little material on 

Dedekind or Cantor. Rather, set theory is not seen as indispensable to a history of logic until the 

paradoxes of set theory arise. This thesis shows that logic has been a part of the history of set 

theory certainly by the time of Dedekind and perhaps further back to Bolzano. This thesis shows 
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that set theory has been a part of the history of logic since De Morgan. Another work I want to 

mention, in order to exhibit the short comings of the historiography, is N.I. Styazkhin’s book The 

History of Mathematical Logic from Leibniz to Peano. From the title it is clear that this work is 

building up to Bertrand Russell’s Principia Mathematica. Styazkhin must have thought that 

Peano marked the end of an era. Styazkhin does not cover Cantor or Dedekind in this work. He 

ends his treatment of logic just before Crossley says that the two strains came together.          

 In the introduction I stated several areas were this history is important. I would like to add 

a discussion of one more here. In recent decades historians and philosophers of science have 

been occupied with a question. Thomas Kuhn, in The Structure of Scientific Revolutions, posited 

a large role for social factors in the development of science. Historians since have grappled with 

the extent to which science is a communal behavior just as religion or art are communal 

behaviors. This question has not penetrated so deeply into the history of mathematics. There are 

reasons for this. Mathematics is difficult to grasp without training and so there is little intuitive 

understanding in the public. Connected to this is the fact that there have been no great public 

debates in modern times involving mathematics. When the Christian world view in challenged in 

the west it is usually along two lines. These are first a debate about the age of the Earth, a debate 

with geology; and second, a debate about the origins of humans, a debate with biology. My thesis 

suggests an answer to the question of how social is mathematics. The answer to this question 

depends whether we are discussing mathematics internally or externally. Internally the answer is 

that the development of logic and set theory in the nineteenth century was certainly social in a 

Kuhnian way. First, an overwhelming majority of the figures discussed were university trained. 

Hence, we see the kind of initiation that Kuhn talked about. It was mentioned earlier that 

mathematics requires training and this fits well with Kuhn’s idea in Structure that the science 
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indoctrinates science students into the paradigm using training. We also saw that the debate 

between Kronecker and Cantor was really about what methods could be used in mathematics. 

Kronecker’s proto-intuitionism could be seen to play the role of supplying mathematical morays, 

as a way of removing ideas that did not fit the community of research. Kronecker was able to do 

this because of his influence in this community. He was able to present so much opposition to 

Cantor’s ideas because he was an editor at the most prestigious journal of mathematics at the 

time, Crelle’s Journal. This has a very Kuhnian feel to it. Externally, this thesis answers a less 

satisfying “it depends.” Certainly we saw a socially engaged and conscious logic in Britain. This 

logic had a social goal, that was, to improve the reasoning of the populace. German logic and set 

theory, however, were not nearly so engaged socially. Logic in Britain was a guide for the 

perplexed, logic (and set theory) in Germany was a foundation for the mathematician. The 

change in foundational mathematics in the nineteenth century was due to the change in what was 

desired. 

 For each of these thinkers I have spent much time on their systems and I should show 

what good this has done. The details of their systems were given above because it would be 

insufficient, in a work such as this, to gloss over the mathematics. This has been a fruitful 

approach. In the chapter on Dedekind a whole intellectual environment was largely constructed 

out of the details of the systems of Peano, Frege, Dedekind, and Cantor. In the chapter on Boole 

the reinterpretation of disjunction was a turning point in logic. This, largely, was a story of the 

details in De Morgan’s, Boole’s, Jevon’s, and Peirce’s systems. 

The poet and literary critic Randall Jarrell once wrote that a great book “does a single 

thing better than any other book has ever done.”
291

 This may preclude me, by Jarrell’s standards, 

from claiming greatness for the preceding work. If I have not done one thing better than anyone 
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ever has, I think I can claim to have done one thing that few have. That is, that I have paid due 

diligence to figures and years that have been neglected by historians.  
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Appendix 1 

De Morgan’s one-to-one correspondence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

C 

1 2 3 4 B 
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For every point on line B a corresponding point can be described upon line A simply by tracing a 

line from vertex C to line B. The intersection of this line at line A and then Line B will describe a 

unique pair of points that cannot be described by any other line.  
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Appendix 2 

Bolzano’s Paradoxes 
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Appendix 3 

 

Begriffschrift 

 In the Begriffschrift Frege gives the following notation to the left of his propositions: 

  

 

 This notation means that the proposition to the left is derived by taking the proposition 5, 

referred to by the number above the vertical line; then replacing the letters on the left with the 

structures on the right. Another notation is shown below: 
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 This notation means that the proposition above the line to the right is to be paired with the 

proposition 5, denoted by the number in parentheses followed by a colon. But first the 

proposition 5 is to receive the replacements noted below the number. In this case, in formula 5 a 

is to be replaced with “if b then a” and b is to be replaced with c. Once this is done the two 

formulas will yield, usually by modus ponens, the conclusion noted below the line.  

 Finally, Frege offers the following shorthand: 
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Here the symbol XX is to be defined beforehand. In this case it is defined as the judgment A. It is 

then combined with the top judgment and with modus ponens produces the judgment B.
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Appendix 4  

MUC 

 In a previous chapter I mentioned the importance of MUC for Frege’s understanding of 

the foundation of arithmetic. MUC is an integral part of this argument. Frege’s full argument 

goes as follows. The concept, “identical to 0, and not identical to 0”, has no number that falls 

under it. It is important to note that not even the number 0 falls under this concept. Because of 

this the number that belongs to the concept “identical to 0 and not identical to 0” is just the 

number 0, since no number falls under it. Now, imagine what happens when we remove the 

second half of this concept, we are left with just, “identical to 0.” Here the number 0 falls under 

the concept, and so the number one belongs to it. Earlier Frege writes the definition of following 

immediately after, in the natural numbers. He writes: 

There exists a concept F, and an object falling under it x, such that the number that 

belongs to the concept “falling under F but not identical to x” is m is synonymous with n’ 

follows in the natural numbers series immediately after m’.
292

 

 

In the above example x is 0, F is “identical to 0”, n is 1, and m is 0. With the distinction between 

“falling under” and “belonging to” Frege is able to get to the successor of 0. It is this way also 

that we see Frege can side step the criticism made that MUC itself contains the concept one, in 

the word “univocal.” If Frege states the above argument first then he had constructed the number 

“1.” He can then use it in MUC.   

  

                                                 
292

 Frege, Foundations, 78. 
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Appendix 5 

Peano’s Correspondence 

The difference between correspondence, similar correspondence, and reciprocal 

correspondence needs to be fleshed out here. Simple correspondence can be seen in this 

example: 

A B 

1 1 

2 2 

3 6 

4 2 

5 4 

            7 

  4 

Here every x of A has an f-correspondent in B. This is all that is meant by correspondence. 

Similar correspondence we can see in the following example: 

 A B 

 1 2 

 2 3 

 3 4 

 4 5 
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 5 6 

  7   

  8 

  9 

Here we see that any two x’s in A will have the same rank as their f-correspondents in B. So, 2 

and 4 in A have as f-correspondents 3 and 5 in B. Reciprocal correspondence can be seen in the 

following example: 

 A B 

 1 2 

 2 3 

 3 4 

 4 5 

 5 6 

 6 7 

 7 8 

 8    9 

Here we see that the correspondence is similar but also that every x in B now has an f-

correspondent in A. Before, we were only concerned with the f-correspondents going from A to 

B. Now we go the other way. We see, of course that this means that A and B now have the same 

number of members. 

 Peano had a slightly different understanding of similarity. For Peano two sets were 

similar if any pair of unequal members of one set corresponded to a pair of unequal members of 

the other set. Of course this doesn’t quite fit Cantor’s spirit of similarity. By Peano’s reckoning 
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we can write that {A| x<y} is similar to {B| fx>fy}.  Peano’s similarity did not require that the 

two sets have the same number of members, that similarity goes both ways. He saves this for the 

reciprocal relation, which is closer to Cantorian similarity.    



  159 

 

Appendix 6 

Proof of the Irrationality of √2 

 First we must understand that a rational number is an integer over another integer, where 

the denominator cannot be zero. So let us write: 

 √2 = a/b 

We do not know what a or b is, we only suppose at the outset that a/b is in a fully reduced form. 

For example, 2/4 can be reduced to ½ but then we can no further reduce it. The first thing to 

notice about this equation is: 

 b√2 = a 

Next we square each side and we write: 

 2b
2
 = a

2 

Since b2 is by definition an even number we can say that a
2
 is an even number. Since, if a square 

is an even number then its square root is also an even number. So then a is even and we may then 

write it as 2k. We now replace a in a
2
 with (2k)

2
. Carrying out this operation we get 4k

2
 and we 

write: 

  4k
2
 = 2b

2 

If we now divide each side by 2 we get: 

 2k
2
 = b

2 

Since 2k
2
 is of the form 2n we can say that it is even and so also that b

2
 is even. And so b is even. 

What we did in this proof was assume that √2 was rational and we have arrived at a 
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contradiction. We began the proof with the supposition that a/b was fully reduced. But we have 

also shown that a is even and b is even and so a/b cannot possibly be fully reduced since we 

could easily reduce it just by dividing the denominator and numerator by 2. 
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Appendix 7 

Dedekind’s Model for the Addition of Real Numbers 
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Appendix 8 

Dedekind’s Proof of the Existence of Irrational Numbers and their Definition 

 Dedekind tells us to imagine a positive integer D such that D is not the square of any 

integer. Imagine this number dividing all of the integers into two groups. The first group we will 

call A1. This group will contain all of the integers; we will call them a1, such that a1
2 
is less than 

D, or such that a1 is a negative integer. In the second group we will call A2. In this group we will 

put all integers; we will call them a2, such that a2
2
 is greater than D.  

It may not be clear from what we have said of D that √D is not rational. After all 

Dedekind only stipulates that D is not the square of an integer, he says nothing of rational 

numbers. Dedekind gives us proof of this also, it is another reduction proof, it follows. Early in 

the proof Dedekind tells us that since D is not the square of any integer then we can state the 

following inequality: λ
2 

< D < (λ+1)
2
 where λ is some positive integer. What this is actually 

telling us is that the square root of D falls between some integer and its successor. So suppose 

that there is a rational number such that its square equals D. Dedekind instructs us that there are 

then two positive integers, t and u, such that: t
2
-Du

2
=0. This has to be explained why exactly this 

is so. √D is supposed to be a rational number. So if we take this rational number to be t/u = √D, 

then squaring each side of this equivalency gives us D = t
2
/u

2
. This relationship can be written as 

Du
2 

= t
2
. This can be written as t

2
-Du

2
=0. Dedekind then tells us to assume that u is the smallest 

positive integer for which this is true. This is the assumption that will be contradicted eventually. 

You will recall at the beginning of the proof Dedekind writes λ
2 

< D < (λ+1)
2
. Dedekind now 
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writes   λu < t < (λ + 1)u. This is gotten by multiplying λ
2 

 by u
2
, D by u

2
, and (λ+1)

2
 by 

u
2
. D multiplied by u

2
 as we saw gives us t

2
. We then have λ

2
u

2
 < t

2
 < (λ + 1)

2
 u

2
. If we take the 

square root of this inequality we get λu < t < (λ + 1)u. We now create a number u’ such that u’ = 

t- λu. We create another number t’ such that t’ = Du-  λt. By the inequality we see that u’ is a 

positive integer since t, λ, and u are all positive integers and t is greater than λu. Also, t sits 

between λu and  (λ+1)u. Therefore t sits somewhere in the space between λu and (λ+1)u this 

space is smaller than u. Therefore, (t – λu) < u, therefore u’ < u . t’ is also a positive integer. This 

can be seen by the fact that t
2
-Du

2
=0. This is just another way of writing D =  t

2
/u

2
. This means 

we can write λ
2 

< t
2
/u

2
 < (λ+1)

2
. If we take the square roots we get  λ

 
< t/u < (λ+1). Next we 

notice that t/u – λ > 0. Since t is a positive integer we can say t(t/u – λ)>0. This is equivalent to 

t
2
/u- t λ > 0. Now, we recall that Du

2
 = t

2
. If this is so then we can divide each side of this 

equality by u and rewrite the denominator. We will have (D∙u∙u)/u = t
2
/u. We next can cancel out 

the u on the left side and we are left with Du = t
2
/u. So now, since t

2
/u- t λ > 0, we can write Du - 

t λ > 0. Dedekind already stipulated that t’ = Du - λt, so therefore t’ is a positive integer. The final 

move in this part of the proof is to consider the following equivalency: t’
2
 – Du’

2
 = (λ

2
 - D)(t

2
 – 

Du
2
) = 0. It may not be clear that: t’

2
 – Du’

2
 = (λ

2
 - D)(t

2
 – Du

2
). Consider this, by the definitions 

of t’ and u’ we can write (Du- λt)
2
 – D(t- λu)

2
 in place of the left side of the equivalence. 

Performing the exponents we get: (D
2
u

2
-2Duλt+ λ

2
t
2
). D(t- λu)

2
 can be rewritten as (Dt

2
 + 2Dtλu 

- Dλ
2
u

2
). Now we have D

2
u

2
-2Duλt+ λ

2
t
2
 - Dt

2
 + 2Dtλu - Dλ

2
u

2
. Because 2Dtλu appears twice, 

once as addition and once as subtraction, we can get rid of both and reduce this to: D
2
u

2
 + λ

2
t
2
 - 

Dt
2
 - Dλ

2
u

2
. Now, let us consider the right side of our original equivalence, (λ

2
 - D)(t

2
 – Du

2
). If 

we carry out the multiplication we get:  λ
2
t
2 

- λ
2
Du

2 
– Dt

2
 + D

2
u

2
. Since the exact same parts now 

occur on either side of the equivalency the equivalency is thus proven. Now comes the 
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contradiction. If D is not the square of an integer but is the square of a rational number then there 

is a number of the form such that D = t
2
/u

2
; Where D, t, and u are both positive integers as we 

have set out originally. We can also write this equivalence as t
2
 – Du

2 
= 0. Now remember also 

that we said that u was the least number for which this equation would work. But look at the 

equivalency we have just proven: t’
2
 – Du’

2
 = (λ

2
 - D)(t

2
 – Du

2
) = 0. Surely we can infer that t’

2
 – 

Du’
2 

= 0. And we determined that u’ was less than u. This generates the contradiction that; u is 

both the least and not the least number for which t
2
 – Du

2 
= 0 is true. The supposition that D 

could be square of a rational number is proven impossible. 

So then what kind of number is √D, it is irrational. This means that the square of every 

rational number is either less than or greater than D since as we have shown it cannot be equal to 

D. Dedekind ends his proof by showing that √D forms a cut such that A1 has no greatest number 

and A2 has no least number. Dedekind gives us the equation y = (x(x
2
 + 3D)) / (3x

2
 + D). With 

this equation we can take any member a1 of A1, we plug it in for x, and find another member a1’, 

that is y, that is between a1 and D. Also, we can take any member that one wishes to say is the 

least member a2 of A2. We can plug this member in for x and get another member a2’, that is y, 

such that it is between a2 and D. This is the definition Dedekind gives for an irrational number, 

one in which A1 has no greatest number, and A2 has no least number.
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Appendix 9 

Cantor’s Proof that c does not have cardinality 0א    

The power of the totality {α} of all numbers α of the second number-class is not equal to 0א. 

Proof.-If {α’’}
293

 were equal to 0א we could bring the totality {α} into the form of a simply 

Infinite series 

 γ1, γ2, . . . γv,. . .  

Such that {γv} would represent the totality of numbers of the second number-class in an order 

which is different from the order of magnitude, and {γv} would contain, like {α}, no greatest 

number.  

 γ1, γp2, . . . γpv,. . .  

such that 

 1 < p2 < p3 . . . < pv < pv+1 < . . . , 

 γ1 < γp2 < γp3 . . . < γpv  < γpv+1  < . . .., 

  γv ≤ γpv. 

By theorem C of S15, there would be a definite number δ of the second number-class, namely, 

  δ = Lim γpv,      

           
v
  

which is greater than all numbers  γpv. Consequently we would have 

  δ > γv 

for every v. But {γv} contains all numbers of the second number-class, and consequently also the 

number δ; thus we would have, for a definite v0, 

    δ = γv0 

which equation is inconsistent with the relation  δ > γv. The supposition {α’’} =  0א  consequently 

leads to a contradiction.
294

  

 

                                                 
293

 As before ’’ is to represent what Cantor writes as two lines over α, this represents the power, or cardinal number, 

of α. 
294

 Georg Cantor, “Selections from Contributions to the Founding of the Theory of Transfinite Numbers” God 

Created the Integers (Philadelphia: Running Press, 2005), 1020-1021. 
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